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Introduction 
  
These notes are intended for readers who have already had a solid course in 
contemporary symbolic logic.  I assume that readers know how to interpret (informally) 
the symbols of symbolic logic and have learned how to do proofs in a natural deduction 
system such as that found in Jon Barwise and John Etchemendy’s textbook, Language, 
Proof and Logic.  The course picks up at the point where students need to learn a precise 
definition of truth in a structure and learn to use it to demonstrate the validity and 
invalidity of arguments. 
 
At the University of Cincinnati, the Philosophy Department teaches a two-quarter logic 
course.  (Quarters are 11-week terms.)  In the first eight weeks of the first quarter, the 
students study material in the first 13 chapters of the Barwise and Etchemendy’s 
textbook.  (We skip some sections.) These notes pertain to the last two weeks of the first 
quarter and all of the second quarter. 
 
If you, dear reader, discover any errors, typographical or worse, I would be grateful for 
your feedback.  Contact me at:  christopher.gauker@uc.edu 
 
 
Outline of course 
 
Here, in outline, is what we will do in this course: 
 
I. Define first-order validity precisely.  To do that we need definitions of structures, 

variable assignments, satisfaction by a variable assignment in a structure, and truth 
in a structure.  

 
II.  Prove soundness and completeness.  That is, we prove that the class of first-order 

valid arguments exactly coincides with the class of arguments whose conclusions 
can be derived from their premises using our inference rules. 

 
Dividends that we will reap from this include: 
 
A.  The Löwenheim-Skolem Theorem.  If a theory (a set of sentences) has a model 

(a structure in which all of the sentences in the set are true), then it has a model 
with a denumerable domain.  (So even a theory of the real numbers will be 
interpretable as true in a model whose domain contains just the positive 
integers.) 
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B. The Compactness Theorem.  If every finite subset of a set of sentences is 

consistent, then the whole set is consistent.  This does not look very exciting, 
but it will be exciting to discover, later on, that second-order logic is not 
compact. 

 
III. Prove Gödel’s First Incompleteness Theorem.  What this says is that the truths of 

arithmetic are not axiomatizable.  That is, there is no decidable, consistent set of 
sentences such that all of the truths of arithmetic are first-order consequences of the 
sentences in that set.  Not even if the set of axioms is infinite (so long as it is 
decidable).   

 
Some dividends that we will reap along the way include: 
 
A. We will acquire the concepts of decidability and enumerability and will learn 

how they can be defined in a precise way in terms of the formulas of arithmetic. 
 
B. We will prove Tarski’s undefinability theorem, which says that no bivalent 

language can contain its own truth predicate. 
 

 Actually, we will prove the Gödel theorem in several different ways and in two 
importantly different versions. 

 
IV. Undecidability of first-order logic.  First-order logic is axiomatizable.  (For 

instance, our Fitch inference rules constitute such an axiomatization.)  However, it 
is not decidable.  That is, there is no algorithm that will take any argument and tell 
us whether or not that argument is first-order valid.  This will follow pretty quickly 
from some results that we will have proved on the way to the second version of 
Gödel’s First Incompleteness Theorem. 

 
V. Gödel’s Second Incompleteness Theorem.  We will make short schrift of this by 

starting with some big assumptions that everyone believes but no one bothers to 
prove. 

 
VI. Second-order logic.  Second-order logic is just like first-order logic, except that we 

will have variables that stand in predicate position and we will have quantifiers that 
bind those variables.  The important fact about second-order logic that we will learn 
is that, like arithmetic, it is not axiomatizable.  We can define logical validity for 
second-order logic, but then we cannot have a set of axioms and inference rules that 
allow us to give proofs for all and only the second-order valid arguments. 
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VII. Modal logic.  We will define logical validity for a language containing modal 

operators, such as “necessarily” and “possibly”.  This gets a bit tricky and 
controversial when we try to add quantifiers as well.  This last unit will belong to 
what is called “philosophical logic”, whereas everything prior will belong to 
(elementary) mathematical logic. 

 
 
Sources 
 
Authors of logic books are not very good about telling us where they learned what they 
know.  Maybe they would like us to believe that they made it up themselves!  But I 
certainly did not make this stuff up myself; so here I will list the books from which I have 
learned the things that I explain in these notes: 
 
Jon Barwise and John Etchemendy, Language, Proof and Logic, CSLI (1999-2002).  I 
have taught elementary logic from countless textbooks over the years; this is clearly the 
best.  The computer programs that come with the textbook are an excellent teaching tool.  
My proof of the completeness theorem (i.e., the proof of the completeness of the Fitch-
style natural deduction system with respect to the definition of logical validity) comes 
from chapters 17 and 19 of this book.  However, I have filled in many details that they 
omit.  Strangely, they do not prove a soundness theorem at all (contenting themselves 
with only the most hand-waving sketch); so I have had to construct that from scratch.  
With axiomatic proof theories, the proof of soundness is quite trivial; it’s not quite so 
trivial for natural deduction systems.  (Page numbers refer to the first edition; a second 
edition listing David Barker-Plummer as the primary author is now available.) 
 
Raymond Smullyan, Gödel’s Incompleteness Proofs, Oxford University Press (1992).  
This is a brilliant book. Although I had previously taught the proofs of Gödel’s theorems 
in Enderton and Boolos & Jeffrey, I probably never really understood Gödel’s theorems 
until I read this book.  Smullyan avoids a great deal of complexity by defining recursively 
enumerable sets and relations as Σ1 sets and relations.  (I will explain these concepts 
below.)  The proofs of incompleteness that I have given below follow certain threads that 
I have picked out of this book.  In one place I refer the reader to this book for a detail that 
I do not myself provide (but which the reader will probably be content to grant without 
proof).  Strangely, Smullyan goes almost right up to, but then does not actually prove the 
very general version of Gödel’s Theorem proved in Enderton and Boolos & Jeffrey, 
which I prove in Lesson 10 below.  I don’t understand why Oxford cannot bring out an 
inexpensive paperback edition of this book.  Maybe it’s not Smullyan’s fault, but 
somebody did a very bad job with the index and references. 
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George Boolos and Richard Jeffrey, Computability and Logic, 2nd edition (or 3rd 
edition), Cambridge University Press.  My proof of the more general version of Gödel’s 
Theorem borrows some final steps from this book.  Also, my proof of the undecidability 
of first-order logic is based on the one in this book.  This book is widely used in 
Philosophy, but it’s a little strange since it starts out with chapters on computability and 
then does everything else in terms of that.  There is a fourth edition, which adds another 
author, John Burgess.  That one looks significantly different (the type has been 
completely re-set), but I have never read it. 
 
Herbert Enderton, Introduction to Mathematical Logic, Academic Press (1972).  This was 
once the standard textbook, and maybe it still is if Boolos and Jeffrey has not eclipsed it.  
The proofs are sometimes sketchy, and sometimes key steps do not stand out clearly.  
The proof of the representability (in a subtheory of number theory) of every recursive 
function is very hard to penetrate.  In these notes I have relied on this text only in the 
presentation of second order logic. 
 
G. E. Hughes and M. J. Cresswell, A New Introduction to Modal Logic, Routledge 
(1996).  I can’t say that I learned what I know about modal logic from this book, since I 
did not even read it until 2004.  Nonetheless, this book does contain all of the essential 
information (as well as much more than the essentials). 
 
Stewart Shapiro, Foundations without Foundationalism: A Case for Second-order Logic, 
Oxford (1991). 



Lesson 1:  First-order Validity 
 
Throughout, I will assume that we are dealing with a particular first-order language L.  I 
will assume that the reader knows the usual formation rules for a first-order language. 
 
Recall the definition of tautological validity: 
 
An argument is tautologically valid if and only if for each assignment of truth values 
to the noncompound components, if the premises are true on that assignment, then the 
conclusion is true on that assignment too. 
 
The definition of first-order validity will look similar: 
 
An argument is first-order valid if and only if for each structure of the language, if the 
premises are true in that structure, then the conclusion is true in that structure too. 

 
So, to understand this definition, we need to know:  What is a structure? 
 
Very approximately:  A structure is a thing that will assign a definite “meaning” or, more 
accurately, “reference”, to each basic vocabulary item, that is, to each name and each 
predicate.  Here, for example, are two partial specifications of structures. 
 
Structure One: 
Interprets “a” as standing for a big tetrahedron in the lower left-hand corner of a certain 
grid. 
Interprets “Cube” as standing for the set of cubes on the grid. 
Interprets “Larger” as standing for the set of pairs, such that the first member larger than 
the second. 
 
Structure Two: 
Interprets “a” as standing for a small dodecahron in the upper right-hand corner. 
Interprets “Cube” as standing for the dodecs on the left-hand side and the large-blocks 
on the right-hand side. 
Interprets “Larger” as standing for the set of pairs such that the first member is a 
tetrahedron and the second member is a cube. 
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Why this will be a little bit complicated 
 
Now we want to explain how the truth value of a sentence of a first-order language 
depends on the interpretation of its components.  In propositional logic, this is 
straightforward because the truth value of a compound sentence is determined by the 
truth values of its components. 
 

Example: If “Cube(a)” is False, and “Large(a)” is True, then we know that the 
truth value of “Cube(a) → Large(a)” is True. 

 
In first-order logic (quantifier logic), the truth value of a complex formula is not 
determined by the truth values of its components, because the components are not always 
sentences. 
 

Example: “∀x∃yLikes(x, y)” has “Likes(x, y)” as a component, but this is neither 
true nor false, because it is not even a sentence. 

 
The solution will be to proceed in three steps: 
 
In association with a structure, we will assign “temporary” meanings to variables, via 
variable assignments. 
 
We will first define “Variable assignment g satisfies formula P in structure M”. 
 
Then, in terms of satisfaction by a variable assignment we will define “Sentence P is true 
in M”. 
 
 
Notational conventions: 
 
When I want to talk about an actual formula or vocabulary item of the language L, I will 
put it in quotation marks: 
 

“Cube(a)” 
 
“∃xLarger(y, x)” 
 
“¬” 

 
But sometimes (even very soon) I will omit the quotation marks just to avoid clutter. 
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When I want to talk about all vocabulary items of a certain kind, or all formulas of a 
certain form, I will use bold-face sans serif: 
 

If n is a name of L, then …. 
 
For any formula of the form (P ∨  Q), if either… 

 
Note especially: Some formulas of the form ∃vP: 
 
 ∃xCube(x) 
 ∃y(Cube(y) ∧ ¬Small(y)) 
 ∃x(Cube(x) ∧ ∀y(x≠y → Larger(x, y))) 
 ∃x∃yTet(y) 
 
Similarly:  Some formulas of the form ∀vQ: 
 
 ∀xCube(x) 
 ∀x¬∃yLarger(x, y) 

∀y(Cube(y) → ∃x(Tet(x) ∧ Adjoins(y, x))) 
  
Note, though, that in subsequent lessons, I will cease to use boldface and just leave it to 
context to determine whether I am talking about a sentence of L or am using schematic 
letters. 
 
Sets 
 
I will assume that the reader has an intuitive understanding of the concept of a set and 
understands that the membership of a finite set can be specified by writing names of the 
members of the set between curly brackets.  Also, the order in which we list the members 
does not affect the identity of the set.  For example: 

 
The set consisting of UC philosophy professors  = 
 
{Gauker, Martin, Robinson, Polger, Skipper, Faaborg, Jost, Richardson, Maglo, 
Carbonell, Allen} 
 
= 
 
{Robinson, Gauker, Martin, Carbonell, Polger, Skipper, Allen, Faaborg, Jost, 
Richardson, Maglo} 
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Set membership: 
 
Set membership is indicated with the symbol “∈” (a stylized epsilon). 
 

Gauker   ∈  {Gauker, Martin, Robinson, Polger, Skipper, Faaborg, Jost, 
Richardson, Maglo, Carbonell, Allen}. 

 
Obama  ∉  {Gauker, Martin, Robinson, Polger, Skipper, Faaborg, Jost, 

Richardson, Maglo, Carbonell, Allen}. 
 
The empty set: 
 
 ∅ = { } 
 
 Do not confuse this with the set containing the empty set:  { ∅ } 
 
Unions:  “A ∪ B” stands for the union of sets A and B.   

 
For example, {1, 5, 9} ∪ {3, 9, 12} = {1, 3, 5, 9, 12}. 
 

  

€ 

Ai
i=1

∞

  is the union of the infinite series of sets A1, A2, A3, . . . 

 
Subset:  “A ⊆ B” means that A is a subset of B. 
 

{1, 5} ⊆ {1, 2, 5, 7, 9}. 
{1, 5} ⊆ {1, 5}. 

 
n-tuples 
 

A pair (or 2-tuple):  〈Gauker, Martin〉 
 
A triple (or 3-tuple):  〈Gauker, Martin, Robinson〉 
 
A one-tuple:  〈Gauker〉 
 
Order matters:   〈Gauker, Martin〉 ≠ 〈Martin, Gauker〉. 
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Functions 
 

A function is a thing with inputs and outputs, and for each input there is exactly 
one output. 
 
Square(x) = y.   Square(3) = 9.   x2 = y. 
 
+(x, y) = z.  +(2, 5) = 7.   This can be abbreviated: x + y = z.   The input is a pair 
〈x, y〉. 
 
fatherof(x) = y.  fatherof(Beau) = Lloyd.   
 
The domain of a function is the set of things that are inputs to the function. 
 
The range of a function is the set of things that are outputs of the function for 
some input to the function.   
 
A function can be thought of as a set of pairs: 
For example, the addition function over positive integers = 
{〈〈1, 1〉, 2〉, 〈〈1, 2〉, 3〉, 〈〈2, 1〉, 3〉, 〈〈2, 2〉, 4〉, ….} 

 
 
The identity relation on D 
 
The identity relation on a set D is the smallest set of ordered pairs such that for every 
object o ∈ D, 〈o, o〉 is a member. 
 
{〈o1, o1〉, 〈o2, o2〉, 〈o3, o3〉, ….} 
 
 
Definition of a structure 
(Other terms for structures:  “model”, “interpretation”.) 
 
Each structure is a pair: 
 
M = 〈DM, ΣM〉, or just 〈D, Σ〉, for short. 
 

DM, the domain of M, is a set of objects, e.g., {o7, o2, o66, …}.   
 
The domain must be nonempty. 
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ΣM is an interpretation: 
 

For each name n of L, ΣM(n) ∈ DM.   
(That is, ΣM assigns to each name a member of DM.) 
 

Example: ΣM(“b”) = o5, assuming o5 ∈ DM. 
 
For each n-place predicate P, ΣM(P) = a set of n-tuples whose members are all 
members of DM. 
 

For example, ΣM(“Larger”) = {〈o2, o5〉, 〈o5, o6〉, 〈o2, o6〉}, assuming that o2, o5, 
o6 are all members of DM. 
 
For example, ΣM(“Cube”) = {〈o2〉, 〈o7〉}. 
 

ΣM(“=”) = the identity relation on DM, as defined above. 
 
 

Variable assignments g in M. 
 
The domain of a variable assignment g in M is some subset of the set of variables of the 
language.  The domain may be the empty set, ∅. 
 
For each variable v in the domain of g,  
g(v) ∈ DM. 
 

Examples: g(“x”) = o3, g(“z”) = o7, assuming o3, o7 ∈ DM. 
 
Strictly speaking, to mark the dependence of g on DM, we should write gM, but for 
typographical simplicity, I omit the subscript (and I will soon start omitting the subscripts 
elsewhere as well). 
 
 
Variants of variable assignments 
 
g[v/o] is the variable assignment just like g except that g[v/o] assigns o to v instead of 
whatever g assigns to v.   
 
Let’s say that g[v/o] is the “v-o variant of g”.   
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Example: 
 

Suppose the domain of g is {“x”, “y”, “z”}, and 
 
g(“x”) = o1. 
g(“y”) = o2. 
g(“z”) = o3. 
 
In that case, g[“y”/o4] (the “y”-o4 variant of g) is the following function: 
 
g[“y”/o4](“x”) = o1. 
g[“y”/o4](“y”) = o4. 
g[“y”/o4](“z”) = o3. 
 
And g[“y”/o4][“z”/o2] is the following function: 
 
g[“y”/o4][“z”/o2](“x”) = o1. 
g[“y”/o4][“z”/o2](“y”) = o4. 
g[“y”/o4][“z”/o2](“z”) = o2. 
 
And g[“y”/o4][“y”/o5] is the following function: 
 
g[“y”/o4][“y”/o5](“x”) = o1. 
g[“y”/o4][“y”/o5](“y”) = o5. 
g[“y”/o4][“y”/o5](“z”) = o3. 
 

In this last example, ‘g[“y”/o4][“y”/o5]’ is the name of the function.  What we write after 
the name of the function between round parentheses is the input to the function. 
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Term assignments 
 
Names and variables are both called “terms”. 
 
Where t is a term and g is some variable assignment in M, 
 
 ΣM(t) if t is a name. 
     h(t) =  
 g(t) if t is a variable. 
 
 
h is a “term assignment for M and g”.   
 
So, in other words a term assignment h combines the functions ΣM and g.  Strictly 
speaking, to mark the dependence of h on M, we should write hM, but to avoid notational 
clutter we will not. 
 
For example: 
 

Suppose: 
 

ΣM(“b”) = o2. 
g(“z”) = o7. 

 
In that case,  
 

h(“b”) = o2. 
h(“z”) = o7. 

 
And, 
 

〈h(“b”), h(“z”)〉 = 〈ΣM(“b”), g(“z”)〉 = 〈o2, o7〉. 
 

We will also have variants of such term assignments.  Thus: 
 

 ΣM(t) if t is a name. 
        h[v/o](t) =  
 g[v/o](t) if t is a variable. 
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Barwise and Etchemendy notation 
 
For users of Barwise and Etchemendy, I should note that the present notation differs from 
theirs in several ways. 
 
Instead of M, they write M. 
 
Instead of DM, they write M(∀) and DM. 
 
Instead of ΣM(“Cube”), they write “Cube”M (but they omit the quotation marks). 
 
And instead of ΣM(P), they write PM. 

Instead of h(t), they write:    t g
M

 

 
The good thing about their notation is that it makes explicit the relativity of term 
assignments to g. 
 
From now on, I will drop the subscript “M” on “DM” and “ΣM”, just to reduce the clutter.  
(But don’t forget that it’s “really there”.) 
 
 
Satisfaction of an atomic formula by a variable assignment in a structure: 
 
Towards defining the conditions under which a variable assignment satisfies a formula in 
a structure, we first define the conditions under which a variable assignment satisfies an 
atomic formula in a structure: 
 
g satisfies R(t1, t2, … , tn) in M if and only if: 
 
〈h(t1), h(t2), …, h(tn)〉 ∈ ΣM(R). 
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Example:  “Larger(b, y)” 
 
Suppose M = 〈D, Σ〉, where 
 
D = {o1, o2, o3}. 
 
Suppose Σ(“b”) = o3, and 
Σ(“Larger”) = {〈o2, o3〉, 〈o3, o1〉, 〈o2, o1〉}, and 
g(“y”) = o1. 
 
In that case, 〈h(“b”), h(“y”)〉 = 〈Σ(“b”), g(“y”)〉 = 〈o3, o1〉 ∈ Σ(“Larger”). 
 
So g satisfies “Larger(b, y)” in M. 

 
 
Another example: “Adjoins(x, y)” 

 
Suppose M = 〈D, Σ〉, where 
 
D = {o1, o2, o3}. 
 
Σ(“Adjoins”) = {〈o2, o3〉, 〈o3, o2〉}. 
 
g(“x”) = o1. 
g(“y”) = o2. 
 
Thus, 〈h(“x”), h(“y”)〉 = 〈 g(“x”), g(“y”)〉 = 〈o1, o2〉 ∉ Σ(“Adjoins”). 

 
So g does not satisfy “Adjoins(x, y)” in M. 
 
 
Satisfaction of a disjunction by a variable assignment in a structure 
 
To illustrate the manner in which we can define the conditions under which variable 
assignments satisfy complex formulas in a structure, consider the case of disjunctions: 
 
g satisfies (Q ∨ R) in M if and only if either g satisfies Q in M or g satisfies R in M. 
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Suppose M = 〈D, Σ〉, where 
 
D = {o1, o2, o3}. 
 
Σ(“Cube”) = {〈o2〉, 〈o3〉}. 
Σ(“Tet”) = {〈o1〉}. 
Σ(“a”) = o2. 
 
g(“x”) = o2.   
 
〈h(“a”)〉 = 〈Σ(“a”)〉 = 〈o2〉 ∈ Σ(“Cube”).  So g satisfies “Cube(a)” in M. 
 
〈h(“x”)〉 = 〈g(“x”)〉 = 〈o2〉  ∉ Σ(“Tet”).  So g does not satisfy “Tet(x)” in M. 
 
So either g satisfies “Cube(a)” in M or g satisfies “Tet(x)” in M. 
 
So g satisfies “(Cube(a) ∨ Tet(x))” in M. 
 
 
Satisfaction of an existential quantification by variable assignment in a structure 
 
To illustrate the manner in which we can define the conditions under which variable 
assignments satisfy quantified formulas in a structure, consider the case of existential 
quantifications: 
 
g satisfies ∃vQ in M if and only if for some o ∈ D, g[v/o] satisfies Q in M. 
 
 
Example: 
 
Suppose M = 〈D, Σ〉, where 
 
D = {o1, o2, o3, o4}. 
 
Σ(“Cube”) = {〈o2〉, 〈o4〉}. 
 
g(“x”) = o1. 
g[“x”/o2](“x”) = o2. 
 
〈h[“x”/o2](“x”)〉 = 〈g[“x”/o2](“x”)〉 = 〈o2〉 ∈ Σ(“Cube”). 
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So g[“x”/o2] satisfies “Cube(x)” in M. 
And o2 ∈ D. 
 
So for some o ∈ D, g[“x”/o] satisfies “Cube(x)” in M. 
 
So g satisfies “∃xCube(x)” in M. 
 
 
 
Another example: 
 
Suppose M = 〈D, Σ〉, where 
 
D = {o1, o2, o3, o4}. 
 
Σ(“Adjoins”) = {〈o1, o2〉, 〈o2, o1〉}. 
 
Σ(“b”) = o3. 
 
g(“y”) = o2 
 
There is no object o ∈ D such that 
 
〈h[“y”/o](“b”), h[“y”/o](“y”)〉 ∈ Σ(“Adjoins”). 
 
For example,  
 
〈h[“y”/o1](“b”), h[“y”/o1](“y”)〉 =  
 
〈Σ(“b”), g[“y”/o1](“y”)〉 =  
 
〈o3, o1〉  ∉ Σ(“Adjoins”). 
 
So, g does not satisfy “∃yAdjoins(b, y)” in M.   
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Recursive Definitions 
(Also called “inductive definitions”.) 
 
We now want to put together a number of stipulations concerning satisfaction, such as 
those above, to form a complete definition of satisfaction.  The definition of satisfaction 
will be a “recursive definition”.  So let’s first get a sense of what those are like: 
 
Some ordinary definitions: 
 

A number x is a positive prime if and only if x is greater than 1 and x is divisible only 
by 1 and itself. 
 
x is a shoathanger if and only if either (i) x is a sheep or (ii) x is a coat hanger. 

 
 
A circular definition (bad! not really a “definition” at all): 
 

A thing x is a schmuck if and only if either (i) x is a liar or (ii) x is a friend of a 
schmuck. 
 
The problem with this “definition” is that if something is not a liar, and none of its 
frends are liars, and none of the friends of its friends are liars, and so on, then we can 
draw no conclusions about whether it is a schmuck or not.    

 
 
A recursive definition: 
 
S is a string if and only if either 
(i) S = “o”, or 
(ii) S = “o” followed by a string. 
 

So, “o” is a string. 
“oo” is a string,  since “o” is a string and “oo” = “o” followed by a string, namely, 

“o”. 
“ooo” is a string, since “ooo” = “o” followed by a string, namely, “oo”. 
And so on. 
But “ooxo” is not a string, because it is not “o” followed by a string; because “oxo” is 

not a string, because it is not “o” followed by a string; “xo” is not a string, 
because it is neither “o” nor “o” followed by a string. 
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Notice in this example that, although the term “string” occurs on the right-hand side, the 
definition is not circular, because whenever we want to know whether something is a 
string, we get back to the question of whether something is “o” or starts with “o”, which 
is a question we can answer just by looking. 
 
 
The Definition of Satisfaction (ta da!): 
 
For every wff P and every structure M and every variable assignment g in M, g satisfies 
P in M if and only if either: 
 
(i)  P = R(t1, t2, …, tn), where R is an n-ary predicate and t1, t2, …, tn are n terms, 

and 〈h(t1), h(t2), …, h(tn)〉 ∈ ΣM(R), or 
 
(ii) P = ¬Q, where Q is a wff, and 

g does not satisfies Q in M, or 
 
(iii) P = (Q ∧ R), where Q and R are wffs, and 

both g satisfies Q in M and g satisfies R in M, or 
  
(iv) P = (Q ∨ R), where Q and R are wffs, and 

either g satisfies Q in M or g satisfies R in M, or 
 
(v) P = (Q → R), where Q and R are wffs, and 

either g does not satisfy Q in M or g satisfies R in M, or 
 

(vi) P = (Q ↔ R), where Q and R are wffs, and 
 either g satisfies both Q and R in M or g satisfies neither Q nor R in M, or 
 
(vii) P = ∀vQ, where Q is a wff, and  
 for every object o ∈ DM, g[v/o] satisfies Q in M, or 
 
(viii) P = ∃vQ, where Q is a wff, and  
 for some object o ∈ DM, g[v/o] satisfies Q in M. 
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An alternative formulation 
 
Suppose P is a wff, M is a structure, and g is a variable assignment in M. 
 
1. Suppose P = R(t1, t2, …, tn), where R is an n-ary predicate and t1, t2, …, tn are n 

terms. 
 Then g satisfies P in M if and only if 〈h(t1), h(t2), …, h(tn)〉 ∈ ΣM(R). 
 
2. Suppose P = ¬Q, where Q is a wff. 
 Then g satisfies P in M if and only if g does not satisfy Q in M. 
 
3. Suppose P = (Q ∧ R), where Q and R are wffs. 
 Then g satisfies P in M if and only if  

both g satisfies Q in M and g satisfies R in M. 
 
4. Suppose P = (Q ∨ R), where Q and R are wffs. 
 Then g satisfies P in M if and only if  

either g satisfies Q in M or g satisfies R in M. 
 
5. Suppose P = (Q → R), where Q and R are wffs. 
 Then g satisfies P in M if and only if  

either g does not satisfy Q in M or g satisfies R in M. 
 
6. Suppose P = (Q ↔ R), where Q and R are wffs. 
 Then g satisfies P in M if and only if either g satisfies both Q and R in M, or g 

satisfies neither Q nor R in M. 
 
7. Suppose P = ∀vQ, where Q is a wff. 
 Then g satisfies P in M if and only if  

for every object o ∈ DM, g[v/o] satisfies Q in M. 
 
8. Suppose P = ∃vQ, where Q is a wff. 
 Then g satisfies P in M if and only if  

for some object o ∈ DM, g[v/o] satisfies Q in M. 
 
We can call this the “definition of satisfaction” too, although actually it is a list of 
“axioms”. 
 
The empty variable assignment, g∅, is the variable assignment whose domain is ∅. 
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The definition of truth in a structure: 
 
A sentence S is true in a structure M if and only if 
the empty variable assignment g∅ satisfies S in M. 
 
Students often find this definition troubling.  How can anything of importance depend on 
the empty variable assignment?  Well, the empty variable assignment gives us a “hook” 
on which to spin variations as we consider the subformulas of the sentence in question. 
 
Example: 
 
Suppose M = 〈D, Σ〉, where 
D = {o1, o2}, 
Σ(“Cube”) = {〈o1〉},  
Σ(“Tet”) = ∅. 
 
So 〈o1〉 ∈ Σ(“Cube”). 
So 〈g∅[“x”/o1](“x”)〉 ∈ Σ(“Cube”). 
So 〈h∅[“x”/o1](“x”)〉 ∈ Σ(“Cube”). 
By clause 1 in the def. of satisfaction, g∅[“x”/o1] satisfies “Cube(x)” in M. 
So there exists an o ∈ D such that g∅[“x”/o] satisfies “Cube(x)” in M. 
By clause 8 in the def. of satisfaction, g∅ satisfies “∃xCube(x)” in M. 
So “∃xCube(x)”  is true in M. 
 
〈o1〉 ∉ Σ(“Tet”).  
〈g∅[“x”/o1](“x”)〉 ∉ Σ(“Tet”). 
〈h∅[“x”/o1](“x”)〉 ∉ Σ(“Tet”). 
By clause 1, g∅[“x”/o1] does not satisfy “Tet(x)” in M. 
〈o2〉 ∉ Σ(“Tet”). 
〈g∅[“x”/o2](“x”)〉 ∉ Σ(“Tet”). 
〈h∅[“x”/o2](“x”)〉 ∉ Σ(“Tet”). 
By clause 1, g∅[“x”/o2] does not satisfy “Tet(x)” in M. 
So there is no o ∈ D such that g∅[“x”/o] satisfies “Tet(x)” in M. 
By clause 8, g∅ does not satisfy “∃xTet(x)” in M. 
So “∃xTet(x)” is not true in M. 
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More examples: 
 
Suppose M = 〈D, Σ〉, where 
D = {o1, o2}, 
Σ(“Cube”) = {〈o1〉},  
Σ(“a”) = o1.  Σ(“b”) = o2. 
 
So 〈o1〉 ∈ Σ(“Cube”). 
So 〈Σ(“a”)〉 ∈ Σ(“Cube”). 
So 〈h∅(“a”)〉 ∈ Σ(“Cube”). 
By clause 1, g∅ satisfies “Cube(a)” in M. 
So by the definition of truth, “Cube(a)” is true in M. 
 
So 〈o2〉 ∉ Σ(“Cube”). 
So 〈Σ(“b”)〉 ∉ Σ(“Cube”). 
So 〈h∅(“b”)〉 ∉ Σ(“Cube”). 
By clause 1, g∅ does not satisfy “Cube(b)” in M. 
So by the definition of truth, “Cube(b)” is not true in M. 
 
By clause 2, g∅ satisfies “¬Cube(b)” in M. 
So by the definition of truth, “¬Cube(b)” is true in M. 
 
Suppose M = 〈D, Σ〉, where 
D = {o1, o2}, 
Σ(“Sameshape”) = {〈o1, o1〉, 〈o2, o2〉, 〈o1, o2〉, 〈o2, o1〉} 
Σ(“a”) = o1. 
 
〈o1, o1〉 ∈ Σ(“Sameshape”). 
〈g∅[“x”/o1](“x”), Σ(“a”)〉 ∈ Σ(“Sameshape”). 
〈h∅[“x”/o1](“x”), h∅[“x”/o1](“a”)〉 ∈ Σ(“Sameshape”). 
By clause 1, g∅[“x”/o1] satisfies “Sameshape(x, a)” in M. 
 
〈o2, o1〉 ∈ Σ(“Sameshape”). 
〈g∅[“x”/o2](“x”), Σ(“a”)〉 ∈ Σ(“Sameshape”). 
〈h∅[“x”/o2](“x”), h∅[“x”/o2](“a”)〉 ∈ Σ(“Sameshape”). 
By clause 1, g∅[“x”/o2] satisfies “Sameshape(x, a)” in M. 
 
So for all o ∈ D, g∅[“x”/o] satisfies “Sameshape(x, a)” in M. 
So by clause 7, g∅ satisfies “∀xSameshape(x, a)” in M. 
So by the definition of truth, “∀xSameshape(x, a)” is true in M. 
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The definition of first-order validity: 

An argument is first-order valid (i.e., the conclusion is a first-order consequence of the 
premises) if and only if for each structure M of the language, if the premises are all true 
in M, then the conclusion is true in M too. 

 

Examples: 
 
Example 1:  The inference from “∃xCube(x)” to “Cube(b)” is not first-order valid.  
 
Suppose M = 〈D, Σ〉, where 
D = {o1, o2}, 
Σ(“Cube”) = {〈o1〉},  
Σ(“b”) = o2. 
 
We have already seen that “∃xCube(x)” is true in M, and we have already seen that 
“Cube(b)” is not true in M. 
 
Example 2:   The inference from “Cube(b)” to “∃xCube(x)” is first-order valid: 
 
Suppose, for arbitrary structure M, “Cube(b)” is true in M. 
By the definition of truth, g∅ satisfies “Cube(b)” in M. 
By clause 1 in the definition of satisfaction, 〈h∅(“b”)〉 ∈ Σ(“Cube”). 
So there is an object o ∈ D such that 〈o〉 ∈ Σ(“Cube”). 
So there is an o ∈ D such that 〈h∅[“x”/o](“x”)〉 ∈ Σ(“Cube”). 
So by clause 1, there is an o ∈ D such that g∅[“x”/o] satisfies “Cube(x)” in M. 
So by clause 8, g∅ satisfies “∃xCube(x)” in M. 
So “∃xCube(x)” is true in M. 
But M was arbitrary. 
So for all structures M, if “Cube(b)” is true in M, then “∃xCube(x)” is true in M as well. 
 
 
Example 3:  Prove that the following argument is first-order valid: 
 
∀x(F(x) → G(x)) 
∃xF(x) 
-------------------- 
∃xG(x) 
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Suppose “∀x(F(x) → G(x))” and “∃xF(x)” are true in arbitrary M. 
g∅ satisfies “∀x(F(x) → G(x))” and “∃xF(x)” in M. 
For some o ∈ D, g∅[“x”/o] satisfies “F(x)” in M. 
Suppose a ∈ D and g∅[“x”/a] satisfies “F(x)” in M. 
For all o ∈ D, g∅[“x”/o] satisfies “(F(x) → G(x))” in M. 
So, g∅[“x”/a] satisfies “(F(x) → G(x))” in M. 
Either g∅[“x”/a] does not satisfy “F(x)” or g∅[“x”/a] satisfies “G(x)” in M. 
So, g∅[“x”/a] satisfies “G(x)” in M. 
So, for some o ∈ D, g∅[“x”/o] satisfies “∃xG(x)” in M. 
g∅ satisfes “∃xG(x)” in M. 
“∃xG(x)” is true in M. 
 
 
Example 4:  Prove that the following argument is not first-order valid: 
 
(∃xF(x) ∧ ∃xG(x)) 
-------------------- 
∃x(F(x) ∧ G(x)) 
 
Suppose M = 〈D, Σ〉, where 
D = {a, b}, and 
Σ(“F”) = {〈a〉}, and 
Σ(“G”) = {〈b〉}. 
 
〈 g∅[“x”/a](“x”)〉 ∈ Σ(“F”). 
〈h∅[“x”/a](“x”)〉 ∈ Σ(“F”). 
g∅[“x”/a] satisfies “F(x)” in M. 
For some o ∈ D, g∅[“x”/o] satisfies “F(x)” in M. 
g∅ satisfies ∃xF(x) in M. 
 
〈 g∅[“x”/b](“x”)〉 ∈ Σ(“G”). 
〈 h∅[“x”/b](“x”)〉 ∈ Σ(“G”). 
g∅[“x”/b] satisfies “G(x)” in M. 
For some o ∈ D, g∅[“x”/o] satisfies “G(x)” in M. 
g∅ satisfies “∃xG(x)” in M. 
 
g∅ satisfies “∃xF(x)” in M and g∅ satisfies “∃xG(x)” in M. 
g∅ satisfies “(∃xF(x) ∧ ∃xG(x))” in M. 
“(∃xF(x) ∧ ∃xG(x))” is true in M. 
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〈g∅[“x”/b](“x”)〉 ∉ Σ(“F”). 
〈h∅[“x”/b](“x”)〉 ∉ Σ(“F”). 
g∅[“x”/b] does not satisfy “F(x)” in M. 
g∅[“x”/b] does not satisfy “(F(x) ∧ G(x))” in M. 
 
〈g∅[“x”/a](“x”)〉 ∉ Σ(“G”). 
〈h∅[“x”/a](“x”)〉 ∉ Σ(“G”). 
g∅[“x”/a] does not satisfy “G(x)” in M. 
g∅[“x”/a] does not satisfy “(F(x) ∧ G(x))” in M. 
 
For all o ∈ D, g∅[“x”/o] does not satisfy “(F(x) ∧ G(x))” in M. 
g∅ does not satisfy “∃x(F(x) ∧ G(x))” in M. 
“∃x(F(x) ∧ G(x))” is not true in M. 
 
 
NOTE:  In all subsequent examples, I will omit all quotation marks.  However, do not 
forget that “really” they are there. 
 
 
Example 5:  Show that the following argument is first-order valid: 
 
∃x∀yR(x, y) 
--------------- 
∀y∃xR(x, y) 
 
Suppose ∃x∀yR(x, y) is true for arbitrary M. 
g∅ satisfies ∃x∀yR(x, y) in M. 
For some o ∈ D, g∅[x/o] satisfies ∀yR(x, y) in M. 
Suppose a ∈ D and g∅[x/a] satisfies ∀yR(x, y) in M. 
 
For all o ∈ D, g∅[x/a][y/o] satisfies R(x, y) in M. 
So, for all o ∈ D, g∅[y/o][x/a] satisfies R(x, y) in M.  (Notice the difference.) 
 
For all o ∈ D, there is some o´ ∈ D such that g∅[y/o][x/o´] satisfies R(x, y) in M. 
For all o ∈ D, g∅[y/o] satisfies ∃xR(x, y) in M. 
g∅ satisfies ∀y∃xR(x, y) in M. 
 
∀y∃xR(x, y) is true in M. 
 



L1:  First-order Validity 11/09/09 Page 25 

 

 
Example 6:  Show that the following argument is not first-order valid: 
 
∀x∃yR(x, y) 
--------------- 
∃y∀xR(x, y) 
 
 
Suppose M = 〈D, Σ〉, where 
D = {a, b}, and  
Σ(R) = {〈a, a〉, 〈b, b〉}. 
 
〈g∅[x/a][y/a](x), g∅[x/a][y/a](y)〉 ∈ Σ(R). 
g∅[x/a][y/a] satisfies R(x, y) in M. 
g∅[x/a] satisfies ∃yR(x, y) in M. 
 
〈g∅[x/b][y/b](x), g∅[x/b][y/b](y)〉 ∈ Σ(R). 
g∅[x/b][y/b] satisfies R(x, y) in M. 
g∅[x/b] satisfies ∃yR(x, y) in M. 
 
For all o ∈ D, g∅[x/o] satisfies ∃yR(x, y) in M. 
g∅ satisfies ∀x∃yR(x, y) in M. 
∀x∃yR(x, y) is true in M. 
 
〈g∅[y/a][x/b](x), g∅[y/a][x/b](y)〉 ∉ Σ(R). 
g∅[y/a][x/b] does not satisfy R(x, y) in M. 
It is not the case that for all o ∈ D, g∅[y/a][x/o] satisfies R(x, y) in M. 
g∅[y/a] does not satisfy ∀xR(x, y) in M. 
 
〈g∅[y/b][x/a](x), g∅[y/b][x/a](y)〉 ∉ Σ(R). 
g∅[y/b][x/a] does not satisfy R(x, y) in M. 
It is not the case that for all o ∈ D, g∅[y/b][x/o] satisfies R(x, y) in M. 
g∅[y/b] does not satisfy ∀xR(x, y) in M. 
 
For all o ∈ D, g∅[y/o] does not satisfy ∀xR(x, y) in M. 
g∅ does not satisfy ∃y∀xR(x, y) in M. 
∃y∀xR(x, y) is not true in M. 
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Example 7:  Show that the following argument is first-order valid: 
 
¬∃x(F(x) ∧ G(x)) 
--------------------- 
∀x(F(x) → ¬G(x)) 
 
Suppose, for arbitrary M, that ¬∃x(F(x) ∧ G(x)) is true in M. 
g∅ satisfies ¬∃x(F(x) ∧ G(x)) in M. 
g∅ does not satisfy ∃x(F(x) ∧ G(x)) in M. 
There is no object o ∈ D such that g∅[x/o] satisfies (F(x) ∧ G(x)) in M. 
There is no object o ∈ D such that both g∅[x/o] satisfies F(x) in M and g∅[x/o] satisfies 
G(x) in M. 
For all objects o ∈ D, either  g∅[x/o] does not satisfy F(x) in M or g∅[x/o] does not satisfy 
G(x) in M. 
For all objects o ∈ D, either g∅[x/o] does not satisfy F(x) in M or g∅[x/o] satisfies ¬G(x) 
in M. 
For all objects o ∈ D, g∅[x/o] satisfies (F(x) → ¬G(x)) in M. 
g∅ satisfies ∀x(F(x) → ¬G(x)) in M. 
∀x(F(x) → ¬G(x)) is true in M. 
 
Example 8:  Show that the following argument is not first-order valid. 
 
(∀xF(x) → G(c)) 
-------------------- 
∀x(F(x) → G(c)) 
 
Suppose M = 〈D, Σ〉, where 
D = {a, b}, and 
Σ(F) = {〈a〉}, and 
Σ(G) = {〈b〉}. 
Σ(c) = a. 
 
〈g∅[x/b](x)〉 ∉ Σ(F).   
g∅[x/b] does not satisfy F(x). 
For some o ∈ D, g∅[x/o] does not satisfy F(x). 
g∅ does not satisfy ∀xF(x) in M. 
Either g∅ does not satisfy ∀xF(x) in M or g∅ satisfies G(c) in M. 
g∅ satisfies (∀xF(x) → G(c)) in M. 
(∀xF(x) → G(c)) is true in M. 
〈g∅[x/a](x)〉 ∈ Σ(F). 
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g∅[x/a] satisfies F(x) in M. 
〈Σ(c)〉 ∉ Σ(G). 
〈h∅[x/a](c)〉 ∉ Σ(G). 
g∅[x/a] does not satisfy G(c) in M. 
It is not the case that either  g∅[x/a] does not satisfy F(x) in M or g∅[x/a] satisfies G(c) in 
M. 
g∅[x/a] does not satisfy (F(x) → G(c)) in M. 
It is not the case that for all o ∈ D, g∅[x/o] satisfies (F(x) → G(c)) in M. 
g∅ does not satisfy ∀x(F(x) → G(c)) in M. 
∀x(F(x) → G(c)) is not true in M.  
 
 
Example 9:  Show that the following argument is not first-order valid. 
 
∀xLikes(x, d) 
-------------------- 
∀xLikes(x, x) 
 
Suppose M = 〈D, Σ〉, where 
D = {a, b}, and 
Σ(Likes) = {〈a, a〉, 〈b, a〉}, and 
Σ(d) = a. 
 
〈g∅[x/a](x), Σ(d)〉 ∈ Σ(Likes). 
〈h∅[x/a](x), h∅[x/a](d)〉 ∈ Σ(Likes). 
So g∅[x/a] satisfies Likes(x, d). 
〈g∅[x/b](x), Σ(d)〉 ∈ Σ(Likes). 
〈h∅[x/b](x), h∅[x/b](d)〉 ∈ Σ(Likes). 
So g∅[x/b] satisfies Likes(x, d) 
For all o ∈ D, g∅[x/o] satisfies Likes(x, d). 
g∅ satisfies ∀xLikes(x, d). 
∀xLikes(x, d) is true in M. 
 
〈g∅[x/b](x), g∅[x/b](x)〉 ∉ Σ(Likes). 
g∅[x/b] does not satisfy Likes(x, x). 
For some o ∈ D, g∅[x/o] does not satisfy Likes(x, x). 
g∅ does not satisfy ∀xLikes(x, x). 
∀xLikes(x, x) is not true in M.  



Lesson 2:  The Soundness Theorem for First-order Logic 
 
Proof by induction 
 
In proving general claims about sentences, arguments, etc., we will sometimes make use 
of the method of proof by induction, or inductive proof.  So I want to begin by giving you 
that concept.  I will start with a simple example, and then I will generalize in a vague way 
from that. 
 
The example I will use has to do with three-valued logic.  So first, before I give you the 
example of an inductive proof, I need to say a little about that. 
 
Suppose we are dealing with a language L containing atomic sentences, the negation sign 
and the disjunction sign.  Since we don’t have quantifiers, we can ignore names and 
predicates and suppose that the atomic sentences are A, B, C, ….  Sentences are built up 
from these atomic sentences in the usual way. 
 
Say that atomic sentences have complexity 0. 
If a sentence P has complexity n, then ¬P has complexity n+1. 
If out of the two sentences P and Q, the complexity of the one with the greatest 
complexity is n, then the complexity of (P v Q) is n+1. 
 
For example, since A is an atomic sentence, ¬A has complexity 1. 
The complexity of (B ∨ C) is 1.   
The complexity of ((A ∨ B) ∨ ¬(B ∨ C)) is 3 (not 2, not 4!).  Can you see why? 
 
Say that a three-valued assignment σ for L is a function that takes atomic sentences of L 
as inputs and yields as outputs a member of the set {T, N, F}.  “N” stands for neither.  
We think of sentences to which N is assigned as neither true nor false. 
 
Let the truth tables for ¬ and ∨ be as follows: 
 

P ¬P 
T F 
N N 
F T 
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        Or in other words: 
 

 
These tables simply display in graphic form the following definition of an evaluation Vσ. 
 
For every three-valued assignment σ and every sentence S of L, 
 (i) if S is atomic, then Vσ(S) = σ(S), and 
(ii) if S = ¬P, then  

(a)  Vσ(S) = T if and only if Vσ(P) = F, and 
(b)  Vσ(S) = F if and only if Vσ(P) = T, and 
(c)  Vσ(S) = N if and only if Vσ(P) = N, and 

(iii) if S = (P ∨ Q), then 
 (a)  Vσ(S) = T if and only if Vσ(P) = T or Vσ(Q) = T, and 
 (b)  Vσ(S) = F if and only if Vσ(P) = F and Vσ(Q) = F, and 
 (c)  Vσ(S) = N in every other case. 
 
Now I state the following theorem 
 
Theorem:  Suppose σ and σ* are three-valued assignments for language L.   
And for all atomic sentences P of L,  

if σ(P) = T, then σ*(P) = T, and 
if σ(P) = F, then σ*(P) = F.   
(That much is the “hypothesis” of the theorem.) 

Then for all sentences P of L (what follows is “the thesis”),  
if Vσ(P) = T, then Vσ*(P) = T, and 
if Vσ(P) = F, then Vσ*(P) = F. 
 

In other words, σ* does not change any of the assignments that σ makes, but σ* may 
assign T or F to more atomic sentences than σ does.  Nonetheless, the theorem states that 
the switch from σ to σ* creates no new truth-value gaps among the compound sentences. 
 

P Q (P ∨ Q) 
T T T 
T N T 
T F T 
N T T 
 N N N 
N F N 
F T T 
F N N 
F F F 

∨ T N F 

T T T T 

N T N N 

F T N F 
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Proof:  By induction “on the complexity of sentences”. 
 
Assume the hypothesis of the theorem (viz., that for all atomic sentences, …). 
 
Basis:  Show that the thesis holds for all atomic sentences (sentences of complexity 0).  
For each sentence P of complexity 0, Vσ(P) = σ(P) and Vσ*(P) = σ*(P).  So since σ* 
assigns T or F if σ does, Vσ* assigns T or F if Vσ does.  In other words, the hypothesis, 
restricted to atomic sentences, implies the thesis, restricted to atomic sentences.  (The 
basis clause for an inductive proof will not always be as easy as this!) 
 
Induction hypothesis (IH):  Suppose that the thesis holds for all sentences having a 
complexity less than or equal to n.   
 
Induction step:  Show that the thesis holds for all sentences having complexity equal to 
n+1. 
 
(¬)  Suppose P = ¬Q has complexity n+1 and Vσ(¬Q) = T.  Then Vσ(Q) = F.  But Q has 

complexity n; so by the induction hypothesis, Vσ*(Q) = F.  So Vσ*(¬Q) = T. 
 
 Suppose P = ¬Q has complexity n+1 and Vσ(¬Q) = F.  Then Vσ(Q) = T.  But Q has 

complexity n; so by the induction hypothesis, Vσ*(Q) = T.  So Vσ*(¬Q) = F. 
 
(∨) Suppose P = (Q ∨ R) has complexity n+1 and Vσ((Q ∨ R)) = T.  Then either Vσ(Q) 

= T or Vσ(R) = T.  But either Q or R has complexity n, and the other has complexity 
less than or equal to n; so by the induction hypothesis, either Vσ*(Q) = T or Vσ*(R) = 
T.  So Vσ*((Q ∨ R)) = T. 

 
 Suppose P = (Q ∨ R) has complexity n+1 and Vσ((Q ∨ R)) = F.  Then both Vσ(Q) = 

F and Vσ(R) = F. But either Q or R has complexity n, and the other has complexity 
less than or equal to n; so by the induction hypothesis, both Vσ*(Q) = F and Vσ*(R) = 
F.  So Vσ*((Q ∨ R)) = F. 

 
End of Proof.  (In other words, as this point, we consider the theorem proved.) 
 
So here is the general pattern of a proof by induction:   
 
When we are doing a proof by induction, we are always trying to say something about all 
of the members of a certain set of objects.  (In the example, it might be the set of 
sentences in L.)  Moreover, the membership of that set is defined “inductively”.  That is, 
we begin the definition of the set by stipulating that certain basic objects belong to the 
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set.  (In the example, that’s the atomic sentences.)  Then we say that if a certain number 
of things that we already know are in the set generate some other object, via one or 
another given member-generating functions, then that other object is in the set too.  And 
that gives us the entire membership of the set.  (In the example, the functions are 
“sentence-forming operations”, which given one or more sentences, generate another 
sentence.)  
 
If a set is defined inductively in this way, then we can prove that a thesis is true of every 
member of the set as follows:  First, we show that the thesis holds for all basic members.  
That step is called the basis.  (In the example, the hypothesis of the theorem was itself 
this part.)  Then we suppose, for the sake of argument, that the thesis holds for some 
arbitrary members of the set, which for an arbitrary m we can also characterize as 
members that are generated by no more than m applications of the member-generating 
functions.  That is the induction hypothesis.  (In the example, we supposed that the thesis 
held for all sentences having complexity less than or equal to n.  The maximum number 
of applications of sentence-forming operations that are necessary to form a sentence 
having complexity n is (2n – 1) (try it!).  So, in effect, we are stipulating a maximum 
number of sentence-forming operations.)  Finally, we examine each of the member-
generating functions and show that if we apply that function to the members of the set of 
which we are supposing the thesis holds, then the thesis holds as well for the members of 
the set that that function yields.  That’s the induction step.  (In the example, we supposed 
that the thesis held for sentences having a maximum complexity of n and show that it 
holds for sentences having a maximum complexity of n+1, i.e., sentences that result from 
one more application of a sentence-forming operation.)  On this basis, we conclude that 
the thesis holds for every member of the set. 
 
Question:  What gives us the right to assume that an inductive proof of this kind proves 
the theorem?  Is that a logical truth?  No, it’s a fact about inductively defined sets (a fact 
of set theory). 
 
 
Simplification of the language 
 
In proving soundness and completeness, we will have to say something about each 
connective and quantifier in the language.  So if we have fewer connectives and 
quantifiers, we will not have to say as much.  So now I will stipulate that the language of 
first-order logic contains only the following logical symbols:  ¬, →, ∀, =.  So we’re 
dropping ∧, ∨, ↔ and ∃. 
 
To be precise, we now define the language L as follows: 
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The vocabulary of L: 
 
Denumerably many individual constants:  a, b, c, … 
Denumerably, many individual variables:  x, y, z, … 
(Recall from Lesson 1 that individual constants and individual variables are called terms.) 
For each n, denumerably many n-ary predicates:  F, G, H, … 
The identity symbol:  = 
The following sentential connectives:  ¬, → 
The universal quantifier:  ∀ 
(“Denumerably many” means: One for each of the natural numbers, 0, 1, 2, 3, . . . .) 
 
The definitions of wff, bound variable and sentence of L: 
 
A string S of symbols from the vocabulary of L is a well-formed formula (wff) of L if 
and only if: 
(a)  S = Pt1t2…tn  and P is an n-ary predicate of L and t1, t2, …, tn are terms of L, or 
(b)   S = ¬P and P is a well-formed formula of L, or 
(c)   S = (P → Q) and P and Q are well-formed formulas of L, or 
(d)   S = ∀vP and P is a well-formed formula of L and v is a variable of L (v is said to 

be bound in this case). 
 
Note:  In this language we will not write parentheses after predicates.  So in this 
language, an atomic sentence will be, for example, Hab, not H(a, b).  There is a reason 
for this other than simplicity.  Now when I do write something like P(v) that will stand 
for a formula that has a free variable v in it somewhere.  If I write something like Pa/v, 
that will stand for the result of putting a in place of each free occurrence of v in P.  For 
example, (Hax → ∀xGx)b/x is (Hab → ∀xGx). 
 
A sentence of L is a well-formed formula of L in which every variable is bound. 
 
Note:  The elimination of ∧, ∨, ↔ and ∃ does not really reduce our “expressive power”, 
because for every sentence in the old language containing one of these symbols there is a 
first-order equivalent sentence in that language that does not contain those symbols.  That 
claim can be proved, by induction, but here I’ll just state the general principles: 
 
Any sentence of the form ∃xP is FO-equivalent to ¬∀x¬P. 
Any sentence of the form (P ∨ Q) is FO-equivalent to (¬P → Q). 
Any sentence of the form (P ∧ Q) is FO-equivalent to ¬(P → ¬Q). 
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Exercise:  Consider the language containing ∧ and ∃ in addition to the vocabulary of L.  
Show by induction on the complexity of sentences that for every sentence of that 
language there is an equivalent sentence that contains only the vocabulary of L. 
 
We can go on using ∧, ∨ and ∃, but we will think of sentences containing these symbols 
as merely abbreviations for sentences that do not contain them.  We will also go on using 
⊥, but now we will think of this as some particular contradiction that we can write using 
just ¬ and →, such as ¬(Fa → Fa). 
 
Accordingly, we will not need the introduction and elimination rules for the connectives 
and quantifiers we have thrown away.  If we throw away those introduction and 
elimination rules, will that mean that we cannot prove as many arguments?  Yes and no.  
Yes, we cannot give proofs for arguments containing sentences containing symbols that 
are not in our language.  But no, for any argument in the old language, if we could have 
proved it with the full set of Fitch rules, then we can prove its translation into the 
impoverished language using the impoverished set of rules. 
 
For example, ∧-Elim gives us the following one-step proof: 
 
   (A ∧ B) 

 
    B 
 
But using just the ¬, → and ⊥ rules, we can give the following proof of the “translation” 
of this argument.  A and B might themselves be sentences containing  ∧, ∨ and ∃; so let 
Aʹ′ and Bʹ′ be their translations, respectively.   
 
  ¬(Aʹ′ → ¬Bʹ′) 

 
      ¬Bʹ′ 

 
          Aʹ′ 

 
         ¬Bʹ′ 

      Aʹ′ → ¬Bʹ′ 
      ⊥ 
   ¬¬Bʹ′ 
    Bʹ′ 
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For another example, suppose ∃-Elim gives us the following proof: 
 
   . 
    ∃vF 

   . 
   . 
 
        

€ 

a[ ]   Fa/v 

       . 
       . 
      Q 
    
   Q 
 
On the assumption that Q can be derived from Fa/v, we can do the “same thing” without 
∃-Elim using our remaining rules.  Suppose that Fʹ′ is the translation of F and Qʹ′ is the 
translation of Q.  We can assume that if Q can be derived from Fa/v, then Qʹ′ can be 
derived from Fʹ′a/v (because we’re thinking of this as a step in an inductive proof on the 
complexity of sentences). 
 
   . 
   ¬∀v¬Fʹ′ 

   
   . 
   . 
      ¬Qʹ′ 

 
           

€ 

a[ ]  

 
             Fʹ′a/v 

            . 
            . 
            Qʹ′ 
            ⊥ 
          ¬Fʹ′a/v 
       ∀v¬Fʹ′ 
       ⊥ 
    ¬¬Qʹ′ 
    Qʹ′ 
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Exercise: Show that we can similarly “prove” ∨-Elim using only the rules that are left 
after we throw away the ∧, ∨ and ∃. 
 
 
Some Conventions and Definitions 
 
Notational conventions:  Upper case sans-serif letters from before the middle of the 
alphabet used as predicates (F, G, etc.) will be predicates of the object language. Upper 
case sans-serif letters from after the middle of the alphabet used as predicates (P, Q, etc.) 
will be schematic predicate letters of the metalanguage.  Single upper-case sans-serif 
letters from the beginning of the alphabet (A, B, etc.) will be abbreviations of sentences 
of the object language.  Single upper-case sans-serif letters from the beginning of the 
alphabet (P, Q, etc.) will be schematic sentence letters of the metalanguage. 
 
Again, ⊥ is an abbreviation of a particular contradiction, let’s say ¬(Fa → Fa). 
 
We will not say that a sentence “follows” from some other sentences, since that is 
ambiguous.  We will say either that the sentence can be derived from those other 
sentences using our proof rules, or we will say that the sentence is a first-order 
consequence of those other sentences. 
 
Where A is a (possibly infinite) set of sentences of language L and P is a sentence of L, 
we say that A | –   P if and only if there is a proof in L of P from A.  (Alternatively, we say 
P can be derived from A; and P is a syntactic consequence of A.)  “| –   ” denotes the 
syntactic consequence relation for L.  The symbol “| –   ” is called the single turnstile. 
 
Where A is a (possibly infinite) set of sentences of L, and P is a sentence of L,, we say 
that A | =   P if and only if P is a first-order consequence in L of A.  (Alternatively, we say 
the argument having the sentences in A as premises and P as conclusion is first-order 
valid; and P is a (first-order) semantic consequence of A.) “| =  “ is the double turnstile. 
 
We will define proofs and subproofs as certain kinds of sequences whose members are 
sentences and other sequences.  When I speak of a member of a sequence, such as a 
sentence or another sequence, I do not include sentences or sequences that are members 
of members.  So the sequence 〈A, 〈B, C〉〉 has just two members, A and 〈B, C〉.  B, for 
instance, is not a member of the sequence 〈A, 〈B, C〉〉.  So also, in counting sentences in a 
sequence, we do not count the sentences in a subproof in the sequence.  
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One sequence Sʹ′ is a component of another sequence S if and only if either Sʹ′ is identical 
to S or S is a member of S or Sʹ′ is a member of a component of S.  So the components of 
〈D, E, 〈A, 〈B, C〉〉〉 are 〈D, E, 〈A, 〈B, C〉〉〉 itself, 〈A, 〈B, C〉〉 and 〈B, C〉.  (B and C are 
not “components”.) 
 
 
Proofs as Sequences 
 
We have been thinking of proofs as things that we write on the vertical dimension with 
“bars” marking subproofs.  Now we are going to start thinking of proofs as sequences.  
The first member of a sequence that is a proof will be a set, the set of premises.  
Subsequent members will be sentences or other sequences.  The sequences that are 
components of the sequences that are proofs will be subproofs. 
 
All of our proof rules can be reconceived as “permissions” on such sequences.  For 
example:  The rule →Intro can be written: 
 
〈…, 〈P, …, Q〉, …, (P → Q), ….〉 
 
In a sequence of this form, we will say that  (P → Q) can be derived by →-Intro from 
〈P, …, Q〉. 
 
The rule ∀-Intro can be written: 
 
〈…, 〈n, …, Pn/v〉, …, ∀vP, …〉, where n does not occur at any higher point in the 
sequence and does not occur in P. 
 
 
Examples: 
 
〈{(A → B), (B → C)}, 〈A, B, C〉, (A → C)〉 is a proof.  We will say that it has depth 1 
because the only sequence that it contains contains no further sequence.  We will say that 
A and (A → B) are “higher” than B and that B can be derived from higher lines by →-
Elim.  Similarly, C can be derived from higher lines by →-Elim.  (A → C) can be 
derived from 〈A, B, C〉 by →-Intro. 
 
〈{(A → B)}, 〈¬B, 〈A, B, ⊥〉,¬A〉 (¬B → ¬A)〉 is a proof.  It has depth 2 because it 
contains a sequence that contains a sequence (but that sequence contains no further 
sequence).  The sentences that are higher than B are A, ¬B, and (A→ B).  However, A is 
not higher than ¬A and ¬A is not higher than (¬B → ¬A). 
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〈{∀xF(x), ∀x(F(x) → G(x))}, 〈a, F(a), (F(a) → G(a), G(a)〉, ∀xG(x)〉 is a proof of 
depth 1. 
 
(Notice that I do not require that the sentence justified by the subproof immediately 
follow the subproof.  Fitch does not require that either, although I never pointed that out.) 
 
The rules ¬-Elim, →-Elim, ⊥-Intro, ⊥-Elim, or ∀-Elim, Reit are our inference rules. 
 
The rules ¬-Intro, →-Intro, and ∀-Intro are our structural rules. (These are also called 
inference rules in a broad sense of the term.) 
 
 
We now turn our attention to the Soundness Theorem for First-order Logic.  
 
The Soundness Theorem for First-order Logic:  If there is a Fitch-style proof that derives 
a conclusion Q from a set of sentences A, then the argument from A to Q is first-order 
valid. 
 
In the symbols that we learned above, the theorem may be stated thus: 
If A | –    Q, then A | =    Q. 
 
In yet other words, if there is a structure in which every member of the set A is true but Q 
is false, then we cannot give a proof of Q from the premises in set A.   
 
But remember that we have streamlined the language by removing ∨, ∧, ↔, and ∃.  
Accordingly, we have eliminated from our system of Fitch rules the rules for these 
expressions.  The definition of satisfaction remains the same, except that we can elminate 
the clauses for the vocabulary that we no longer use.  (We will not renumber the clauses 
of the definition, because we will not bother to refer to them by number.) 
 
 
The definition of proof 
 
I am assuming that you already understand, in a practical sense, what is meant by a proof 
(specifically, a Fitch-style proof).  You understand this in the sense that you have 
acquired the skill of distinguishing between successful proofs and (unsuccessful) non-
proofs.  But you may never have encountered a really precise definition of a proof.  
Roughly, a proof is a thing in which each step must either be an assumption or follow 
from previous steps in accordance with one of our rules, and in which all assumptions 
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must eventually be discharged. But that is not really precise because it does not say 
anything about, subproofs, which assumptions are in force at each step, when an 
assumption has been discharged, when names are “new”, etc.  What’s more I am still not 
going to give you a precise definition, because it would be really complicated and not 
worth the trouble.  
 
One thing we would have to do, one way or another, if we wanted to give a precise 
definition of proof would be to define in a precise what which lines in a proof are the 
assumptions in force at each step.  We could do that, but again, it would not be worth the 
trouble.  So I am just going to assume that you are always able to “tell” which lines are 
the assumptions in force at any given step. 
 
However, as I explained above, we are now going to represent proofs as sequences (so 
that we can write them on a single line, rather than vertically), and so a few examples 
might be useful. 
 
Examples of proofs, non-proofs and assumptions in force.  
 
〈{∀x(Fx → Gx), ¬∀xGx }, 〈∀xFx, 〈a, Fa, (Fa → Ga), Ga〉, ∀xGx, ⊥〉, ¬∀xFx〉  

 
This is a proof.  
 
{∀x(Fx → Gx), ¬∀xGx} is the set of premises. 
 
〈∀xFx, 〈a, Fa, (Fa → Ga), Ga〉, ∀xGx, ⊥〉 is a subproof in the proof having ∀xFx 
as its assumption. 
 
〈a, Fa, (Fa → Ga), Ga〉 is a subproof in the subproof, having a as its “assumption”. 
 
The premises are assumptions in force for all of the lines that follow them.  In 
addition, ∀xFx is an assumption in force for all of the steps in the subproof for which 
it is the assumption, including those in the subproof it contains, and for no others. 

 
Fa follows from ∀xFx by ∀-Elim. 
 (Fa→Ga) follows from ∀x(Fx → Gx) by ∀-Elim. 
Ga follows from (Fa→Ga) and Fa by →-Elim.  
∀xGx follows from the subproof 〈a, Fa, (Fa → Ga), Ga〉 by ∀-Intro. 
⊥ follows from ¬∀xGx and ∀xGx by ⊥-Intro. 
¬∀xFx follows from the subproof that precedes it by ¬-Elim. 
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By contrast 〈{∀xRxa}, 〈a, Raa〉, ∀xRxx〉 is not a proof, because ∀xRxx does not follow 
from the subproof 〈a, Raa〉 by any of our rules.  Notice that a is not “new” at that point 
in the proof. 
 
〈{(Fa → Ga), ¬Ga}, 〈Fa, Ga, ⊥〉〉 is not a proof, because the assumption in the subproof 
never gets discharged.  (We would need to add one more element, namely, ¬Fa.) 
 
〈{(Fa → Ga), ¬Ga}, ¬Fa〉 is not a proof, because there is no rule that takes us from the 
premises to ¬Fa. 
 
One more fact about proofs: 
We had no occasion to say this before, but we allow the possibility that an argument 
contains denumerably (infinitely)s many premises (one for each natural number, 0, 1, 2, 
etc.). 
 
 
Quasi-proofs 
 
In addition to the concept of a proof, we are going to need that concept of a quasi-proof.  
A quasi-proof is just like a proof except that it may contain undischarged assumptions.  
That is, the subproof containing an assumption may not have been brought to an end and 
used to justify a line outside the subproof.  So in a quasi-proof each line beyond the 
premises is either an assumption or follows from available lines by one of our rules, but 
the “proof” may not be finished. 
 
Examples; 
 
〈{∀x(Fx → Gx), ¬∀xGx }, 〈∀xFx, 〈a, Fa, (Fa → Ga), Ga〉, ∀xGx, ⊥〉, ¬∀xFx〉 is a 
proof. 
 
But 〈{∀x(Fx → Gx), ¬∀xGx }, 〈∀xFx, 〈a, Fa, (Fa → Ga), Ga〉, ∀xGx, ⊥〉〉 (which is 
just like the proof above, except that it does not contain the last sentence) is only a quasi-
proof, since we did not discharge the assumption of the last subproof by applying any of 
our rules to it. 
 
Likewise, 〈{∀x(Fx → Gx), ¬∀xGx }, 〈∀xFx, 〈a, Fa, (Fa → Ga), Ga〉, ∀xGx〉〉 (which 
omits “⊥” from the previous quasi-proof) is only a quasi-proof.   
 
The reason we are interested in the concept of a quasi-proof is that the set of quasi-proofs 
can be defined inductively (although I will not state the definition).  The set of proofs is 
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defined as a subset of the set of quasi-proofs.  The proofs are the quasi-proofs in which 
every assumption has been discharged. 
 
 
Outline of the proof of the Soundness Theorem 
 
The core of the Soundness Theorem is a theorem that is actually stronger than the 
Soundness Theorem (in the sense that it logically implies the Soundness Theorem, but is 
not implied by it), which we will call the Soundness Theorem for Quasi-proofs: 
 
The Soundness Theorem for Quasi-proofs:  If S is a quasi-proof, then each step after the 
premise in S is either an assumption or a FO-consequence of assumptions in force at that 
step. 
 
We will also need to appeal to a few facts that we assemble in one three-part lemma that 
needs to be proved independently.  (A “lemma” is a little theorem that one proves on the 
way to proving something more important.) 
 
The Naming Lemma:   
 
(1)   If Σ(n) = Σ(m) then any variable assignment g satisfies Pn/v in M if and only if g 

satisfies Pm/v in M.  
 
(2)   If Σ(n) = o then any variable assignment g satisfies Pn/v in M if and only if g[v/o] 

satisfies P in M.  In other words, g satisfies Pn/v in M if and only if g[v/Σ(n)] 
satisfies P in M.  

 
(3) If two structures M and M* differ only in that ΣM(n) ≠ ΣM*(n), then if n does not 

occur in P, then, for any variable assignment g, g satisfies formula P in M if and 
only if g satisfies formula P in M*. 

 
Proof: Each of these statements can be proved by induction on the complexity of P, but 
we will just take them for granted as obvious.  (We will prove (2) in L4.) 
 
Once we have proved the Soundness Theorem for Quasi-proofs, the Soundness Theorem 
(for proofs proper) will immediately follow: 
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The Soundness Theorem (for proofs): If A | –    Q, then A | =    Q. 
 
Proof:  Suppose there is a proof in which A is the set of premises and Q is the last line.  
But the only assumptions in force for the last line of a proof are the premises.  So, by the 
Soundness Theorem for Quasi-proofs, Q is a FO-consequence of the premises in A.  
QED. 
 
Here, in outline, is how we will prove the Soundness Theorem for Quasi-proofs.  
Suppose we are dealing with an arbitrarily chosen quasi-proof: 
 
At the basis of the induction, we show that if a proof has just one step beyond the 
premises, then it is either an assumption for a subproof or it is a FO-consequence of those 
premises (which, of course, are assumptions in force for it).  If it is not an assumption, 
then it follows by one of our rules by from the premises.  In that case, we show, it is a 
FO-consequence of those.   
 
Then, for the induction hypothesis, we suppose that each of the first n steps beyond the 
premises is either an assumption or a FO-consequence of the assumptions in force for that 
step.   
 
Finally, for the induction step, we show that the n+1th step must be either an assumption 
or a FO-consequence of the assumptions in force for that step.  We take this to show that 
each of the steps beyond the premises is either an assumption or a FO-consequence of the 
assumptions in force at that step.  That will complete the proof of the theorem. 
 
 
Now let us work through this proof (of the Soundness Theorem for Quasi-proofs) in 
detail:  
 
Suppose (this is the hypothesis) that S is a quasi-proof.  We want to show (this is the 
thesis) that every step of S beyond the premises is either an assumption for a subproof or 
a FO-consequence of the assumptions in force at that step. 
 
 
Basis:  At the basis, we need to prove that the first step beyond the premises is either an 
assumption for a subproof or a FO-consequence of the assumptions in force (= the 
premises). 
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Basis Case 1:  Suppose the first step beyond the premises is an assumption for a 
subproof.  It follows immediately that it is either an assumption or a FO-consequence of 
the assumptions in force. 
 
Basis Case 2:  Suppose the first step beyond the premises is not an assumption for a 
subproof.  Then, by the nature of quasi-proofs, it must be derivable from the premises by 
one of our inference rules, without the use of any subproofs.  So it must be derivable by 
=–Elim, =-Intro, ¬-Elim, →-Elim, ⊥-Elim, ⊥-Intro, ∀-Elim or Reit (but not by ¬-Intro, 
→-Intro, or ∀-Intro, which all use subproofs).  We look at each of these cases in turn.   
 
Basis Case 2.1:  →-Elim.  Suppose the first line after the premises is Q and it follows by 
→-Elim from premises of the form (P → Q) and P. Suppose for arbitrary structure M, 
the premises are all true in M.  Then g∅ satisfies (P → Q) and P in M (because they are 
premises).  By the definition of satisfaction, g∅ satisfies Q in M.  So Q is true in M.  So Q 
is a FO-consequence of the premises. 
 
Basis Case 2.2:  =-Elim.  Suppose the first line after the premises is a formula Pm/v and 
it follows by =-Elim from premises of the form Pn/v and n = m (or m = n).  Suppose for 
arbitrary structure M, the premises are all true in M.  Then g∅ satisfies Pn/v and n = m in 
M.  By the definition of satisfaction 〈Σ(n), Σ(m)〉 ∈ Σ(=).  So Σ(n) = Σ(m).  (Recall that 
every assignment in every structure assigns the identity relation to =.)  So by the Naming 
Lemma (1) above, g∅ satisfies Pm/v in M.  Pm/v is true in M.  So Pm/v is a FO-
consequence of the premises. 

 
Basis Case 2.3:  ∀-Elim.  Suppose the first line after the premises is a formula Pn/v, and 
it follows by ∀-Elim from a premise of the form ∀vP.  Suppose for arbitrary structure M, 
the premises are all true in M.  Then g∅ satisfies ∀vP in M.  So by the definition of 
satisfaction, for all objects o ∈ D, g∅[v/o] satisfies P in M.  In particular, g∅[v/Σ(n)] 
satisfies P in M.  So by the Naming Lemma (2) above, g∅ satisfies Pn/v in M.  Pn/v is 
true in M.  So Pn/v is a FO-consequence of the premises. 
 
Basis Case 2.4:  =-Intro.  Do this as an exercise. 
Basis Case 2.5: ⊥-Elim.  Do this as an exercise. 
Basis Case 2.6: ⊥-Intro.  Do this as an exercise. 
Basis Case 2.7:  ¬-Elim. Do this as an exercise. 
Basis Case 2.8:  Reit.  Do this as an exercise. 
 
 
Induction Hypothesis (IH):  Assume that every step up to the nth step of the quasi-proof 
is either an assumption or a FO-consequence of the assumptions in force at that step.   
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Induction Step:  At this step, we need to prove that the every step up to the n+1th step is 
either an assumption or a FO-consequence of the assumptions in force at that step.   
 
Induction Step Case 1:  Suppose the n+1th step beyond the premises is an assumption for 
a subproof.  It follows immediately that it is either an assumption or a FO-consequence of 
the assumptions in force. 
 
Induction Step Case 2: Suppose the n+1th step beyond the premises is not an assumption 
for a subproof.  Then, by the nature of quasi-proofs, it must be derivable from the 
premises by one of our inference rules (including those that use subproofs).  We look at 
each of these cases in turn. 
 
We start with the cases that do not involve subproofs. 
 
Induction Step Case 2.1:  →-Elim.  Suppose the n+1th step after the premises is Q and it 
follows by →-Elim from earlier steps of the form (P → Q) and P.  In that case, every 
assumption in force for those two earlier steps is still in force for the n+1th step, Q.  (Here 
is one place where we rely on our intuitive understanding of what a quasi-proof is.)  By 
IH, each of the steps up to and including the nth step is either an assumption or a FO-
consequence of assumptions in force at that step, which include (P → Q) and P.  But Q 
is a FO-consequence of (P → Q) and P (as explained above, when we looked at this in 
the basis).  Since (P → Q) and P are FO-consequences of assumptions in force at the 
n+1th step, and Q is a FO-consequence of (P → Q) and P, it follows that the n+1th step, 
Q, is a FO-consequence of the assumptions in force at that step.   
 
Induction Step Case 2.2: ⊥-Intro.  Suppose that the n+1th step is ⊥ and it follows by ⊥-
Intro from earlier steps of the form P and ¬P.  In that case, every assumption in force for 
those earlier steps is still in force for the n+1th step, ⊥. By IH, each of the steps up to and 
including the nth step is either an assumption or a FO-consequence of assumptions in 
force at that step, which include P and ¬P.  But ⊥ is a FO-consequence of P and ¬P.  (P 
and ¬P are not both true in any structure; so in every structure in which P and ¬P are 
both true, namely, none, ⊥ is true.)  Since P and ¬P. are FO-consequences of the 
assumptions in force at the n+1th step, and ⊥ is a FO-consequence of P and ¬P, it 
follows that the n+1th step, ⊥, is a FO-consequence of the assumptions in force at that 
step. 
 
Induction Step Case 2.3:  =-Elim.  Do this as an exercise. 
Induction Step Case 2.4:  ∀-Elim.  Do this as an exercise. 
Induction Step Case 2.5:  =-Intro.  Do this as an exercise. 
Induction Step Case 2.6: ⊥-Elim.  Do this as an exercise. 
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Induction Step Case 2.7:  ¬-Elim.  Do this as an exercise. 
Induction Step Case 2.8:  Reit.  Do this as an exercise. 
 
Now we turn to the cases that involve subproofs. 
 
Induction Step Case 2.9: ¬-Intro.  Suppose that the n+1th step after the premises is ¬Q 
and it follows by ¬-Intro from a subproof 〈Q, . . . , ⊥〉.  Suppose the assumptions in force 
for ¬Q at that step are the sentences in a set A.  Then the assumptions in force for the 
steps in the subproof 〈Q, . . . , ⊥〉, following the assumption Q, are A ∪ {Q}.  Since ⊥ is 
at an earlier step, by IH, ⊥ is a FO-consequence of A ∪ {Q}.  But ⊥ is not true in any 
structure.  So there is no structure M such that every member of A ∪ {Q} is true in M.  
(Otherwise, since ⊥ is a FO-consequence of A ∪ {Q}, ⊥ would be true in M.)  So, for 
arbitrarily chosen structure M, if every member of A is true in M, then Q is not true in M.  
So g∅ does not satisfy Q in M.  So g∅ satisfies ¬Q in M.  So ¬Q is true in M.  But M was 
arbitrarily chosen; so ¬Q is a FO-consequence of A, which is the set of assumptions in 
force for it. 
 
Induction Step Case 2.10:  ∀-Intro.  Suppose the n+1th step after the premises is ∀vQ and 
it follows by ∀-Intro from a subproof 〈n, . . . , Qn/v〉.  Suppose the assumptions in force 
for ∀vQ at that step are the sentences in a set A.  The assumptions in force for the last 
step of the subproof, Qn/v are the sentences in that same set A (since this subproof adds 
no assumptions, but merely stipulates that n is “new”).  By IH, Qn/v is a first-order 
consequence of A.  Suppose, for a reductio ad absurdum, that ∀vQ is not a FO-
consequence of A.  Then there is a structure M such that every sentence in A is true in M, 
but ∀vQ is not true in M.  So g∅ satisfies every member of A in M but g∅ does not satisfy 
∀vQ in M.  So there is an object in D, call it o, such that g∅[v/o] does not satisfy Q in M.  
Consider a structure M* just like M except that Σ* (the assignment for M*) assigns o to n, 
i.e., Σ*(n) = o.  Since n is new, and not in any member of A and not in Q, by the Naming 
Lemma (3), g∅ satisfies the members of A in M* and g∅[v/o] does not satisfy Q in M*.  By 
the Naming Lemma (2), g∅ does not satisfy Qn/v in M*.  So the members of A are true in 
M*, and Qn/v is not true in M*.  So contrary to assumption, Qn/v is not a first-order 
consequence of A.  So we were mistaken to suppose that ∀vQ is not a FO-consequence 
of A; it is. 
 
Induction Step Case 2.11:  →-Intro.  Do this as an exercise. 
 
This completes the proof of the Soundness Theorem for Quasi-proofs, and therewith, the 
proof of the Soundness Theorem.   
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Lesson 3:  The Completeness Theorem for Truth-functional 
Logic 
 
Recall the Soundness Theorem for First-Order Logic:  If A | –    Q, then A | =   Q. 
  
We now want to prove the converse of this, the Completeness Theorem (for first-order 
logic):  If A | =   Q, then A | –    Q. 
 
However, we will approach it in stages. The first big stage will be to prove a 
completeness theorem for a deductive apparatus that excludes the quantifier rules and the 
identity rules, i.e., a completeness theorem for truth-functional logic. 
 
Define:  A | –  tt Q if and only if Q can be derived from sentences in A using only the 
introduction and elimination rules for ¬, →, and ⊥-Intro.  (In other words, there is a 
proof, call it tt-proof, of Q from A using just those rules.)  Call these the sentential rules 
(since they do not deal in subformulas).  I assume that the relation  | –  tt  pertains to a 
particular language, although I usually suppress reference to it. 
 
We do not need ⊥-Elim, because if we can construct a proof like 〈…, ⊥, Q〉, then we can 
construct a proof like 〈…, 〈¬Q, …, ⊥〉, ¬¬Q, Q〉.  We also do not need Reit, because if 
we can construct a proof like 〈…, P, …, P〉, then we can construct a proof like 
〈…, P, …, 〈¬P, ⊥〉, ¬¬P, P〉. 
 
Let val (lower case “v”) be an assignment of the truth values T and F to the atomic and 
quantified sentences (i.e., noncompound sentences) of L.  
 
Let Val be a function from the sentences of L into {T, F} such that  
Val(P) = T (capital “V”) if and only if either: 
(i)   P is an atomic or quantified sentence and val(P) = T, or 
(ii) P = ¬Q and Val(Q) = F, or 
(iii)  P = (Q → R) and either Val(Q) = F or Val(R) = T.  
 
(Remember that we have thrown out ∧, ∨ and ↔.) 
 
So Val, called an evaluation, “extends” to the rest of the language the truth value 
assignment val. The definition of Val basically just states what the truth tables for ¬ and 
→ give us. 
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Define: A | =  tt Q if and only if for every truth value assignment val, if for all P ∈ A, Val(P) 
= T, then Val(Q) = T.  (In other words, Q is a tautological consequence of A.  Again, I 
assume we are talking about a particular language, although I suppress reference to it.) 
 
Define: A is tt-satisfiable if and only if there is an assignment of truth values to the 
atomic and quantified components val such that every member of A is true on that 
assignment, i.e., for all S ∈ A, Val(S) = T.  (A is truth-functionally consistent.) 
 
Before we prove the Completeness Theorem, we will prove the completeness of the 
sentential rules relative to tautological consequence: 
 
The Truth-functional Completeness Theorem:  If A | =  tt Q, then A | –  tt Q. 
 
Here is how we will do that.  We will prove the following three Lemmas, from which the 
Truth-functional Completeness Theorem follows: 
 
Lemma 1:  If A | –/  tt S then A ∪ {¬S} | –/  tt ⊥. 
 
Lemma 2:  If B | –/  tt ⊥, then B is tt-satisfiable. 
 
Lemma 3:  If A ∪ {¬S} is tt-satisfiable, then A | =/  tt  S.   
 
The Truth-functional Completeness Theorem immediately follows from L1-L3: 
 

By Lemma 2, if A ∪ {¬S} | –/  tt ⊥, then A ∪ {¬S} is tt-satisfiable.   
(Write “A ∪ {¬S}” in place of “B”.) 
Suppose, A | –/  tt S.  By Lemma 1, A ∪ {¬S} | –/  tt ⊥.   
By the above consequence of Lemma 2, A ∪ {¬S} is tt-satisfiable. 
By Lemma 3, A | =/  tt  S. 
So, if A | –/  tt S then A | =/  tt  S. 
i.e., if A | =  tt  S, then A | –  tt S. 

 
The hard part will be to prove Lemma 2. 
 
 

Proof of Lemma 1: 
 
We will prove it in this form:  If A ∪ {¬S} | –  tt ⊥, then A | –  tt S. 
 
Observe:  If we can have a proof like this: 
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〈A ∪ {¬S}, …, ⊥〉 
 
then we can have a quasi-proof like this: 
 
〈A, 〈¬S, …, ⊥〉〉. 
 
Add two steps, by ¬-Intro and ¬Elim. 
 
〈A, 〈¬S, …, ⊥〉, ¬¬S, S〉. 
 
Thus, we obtain a proof of S from A. 

 
 

Proof of Lemma 3: 
 
If there is a truth value assignment val such that for all P ∈ A, Val(P) = T and 
Val(¬S) = T, then there is a truth value assignment, namely, the same one, such that 
for all P ∈ A, Val(P) = T and Val(S) = F. 

 
What remains, for proving the Truth-functional Completeness Theorem is proving 
Lemma 2.  First, it will be useful to define two terms: 
 
Formal consistency:  A set of sentences M is formally consistent if and only if M | –/  tt ⊥.  
(This is “formal” consistency, because it is defined in terms of proofs, not in terms of 
valuations, and proofs only “look” at the forms of sentences, not their meanings.) 
 
Formal completeness:  A set of sentences M is formally complete if and only if for all 
sentences S, either M | –  tt S or M | –  tt ¬S.   (This is “formal” completeness because it is 
defined in terms of proofs.) 
 
We will prove it by first proving the following two theorems: 
 
Theorem: Satisfiability of formally consistent and complete sets:   
 
If M is a set of sentences that is formally consistent and formally complete, then there is a 
truth value assignment val such that for all S ∈ M, Val(S) = T. 
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Theorem: Completability of formally consistent sets: 
 
If B is formally consistent (i.e., B | –/   tt ⊥), then there is a formally consistent, formally 
complete set M such that B ⊆ M. 
 
Proof of Lemma 2, given these two theorems: 
 
Suppose that B | –/  tt ⊥.  By the completability of formally consistent sets, there is a 
formally consistent, formally complete set M such that B ⊆ M.  By the satisfiability of 
formally consistent and complete sets, M is tt-satisfiable.  Since B ⊆ M, B is tt-satisfiable 
too. 
 
It remains to prove the satisfiability of formally consistent and complete sets and the 
completability of formally consistent sets.  First, we will prove a little lemma that will 
help us in the proof. 
 
Lemma 4 (= Lemma 3 in Barwise and Etchemendy, p. 472): 
Suppose A is a formally consistent and formally complete set of sentences. 
1.  A | –  tt ¬P if and only if A | –/  tt P.   
2.  A | –   tt (P → Q) if and only if either A | –/  tt P or A | –  tt Q. 
 
(Note:  You would expect a proof of the completeness of the sentential proof rules to use 
those rules somehow.  They are used here, in proving Lemma 4 (2), as well as in the 
proof of the completability of formally consistent sets.) 
 

Proof of 1:   
Left-to-right:  By the assumption that A is formally consistent,  
if A | –   ¬P, then A | –/    P.   
Right-to-left: By the assumption that A is formally complete,  
if A | –/    P, then A | –   ¬P.  

 
Proof of 2:   

Right-to-left: 
Case (i):  Suppose A | –/  tt P.  Since A is formally complete, A | –   tt ¬P.  So we can 
construct a proof like the following, using ⊥-Intro, ¬-Intro, ¬-Elim and →-Intro: 
〈A, …, ¬P, 〈P, 〈¬Q, ⊥〉, ¬¬Q, Q〉, (P → Q)〉. 
Case (ii):  Suppose A | –  tt Q.  Then we can use →-Intro to constuct a proof like 
this: 〈A, 〈P, …, Q〉, (P → Q)〉. 
Left-to-right: 
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Suppose neither A | –/  tt P not A | –  tt Q.  
That is, A | –  tt P and A | –/  tt Q.  Since A is formally complete, A | –  tt ¬Q. 
So we can construct the following proof, using →-Elim, ⊥-Intro, and ¬-Intro: 
〈A, …, P, ¬Q, 〈(P → Q), Q, ⊥〉, ¬(P → Q)〉.  
Since A is formally consistent, A | –/  tt (P → Q).   
So if A | –   tt (P → Q) then either A | –/  tt P or A | –  tt Q. 

 
 
Proof of the satisfiability of formally consistent and formally complete sets: 

 
Suppose M is formally consistent and complete.  Let val be such that for all atomic 
and quantified sentences S of L, val(S) = T if and only if M | –  tt S.  We prove by 
induction that for all sentences S of L, Val(S) = T if and only if M | –  tt S.  In that case, 
for all S ∈ M, Val(S) = T. 
 
Basis:  The thesis holds for all atomic and quantified sentences, by the definition of 
Val. 
 
Induction hypothesis:  Suppose the thesis holds for arbitrary sentences Q and R of L. 
 
Induction step:   
(¬)  Suppose P = ¬Q. Val(P) = T iff Val(Q) = F iff (by IH) M | –/  tt Q iff (by Lemma 

4) M | –  tt ¬Q. 
(→) Suppose P = (Q → R). Val(P) = T iff Val(Q) = F or Val(R) = T iff (by IH)    

M | –/  tt Q or M | –  tt R iff (by Lemma 4) M | –  tt (Q → R). 
 
But for all S ∈ M, M | –  tt S.  So for all S ∈ M, Val(S) = T, i.e., M is tt-satisfiable. 

 
 
Enumerating the sentences of L. 
 
We will need to assume that there is an infinite list of the sentences of L.  Since there are 
infinitely many names, variables and predicates in the language, we cannot expect to list 
them in alphabetical order.  Here is how we can do it.  Suppose we have an infinite list of 
the sentences that are two symbols long (e.g., Fa, Fb, etc.), and an infinite list of the 
sentences that are three symbols long, and so on.  So we have an infinite number of 
infinite lists.  Arrange the lists in a table, with each list occupying one column, thus: 
 

 2 sym’s 3 sym’s 4 sym’s   … 
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And then, produce a single list of all sentences by following the zig-zag line through the 
table.  (This is called zig-zagging through the table.) 
 
But now, how do we produce the list of two-symbol sentences?  Here’s how:  Construct a 
table with a list of predicates running down the left and a list of names running across the 
top, and in each cell write the predicate followed by the name, thus: 
 
 
 

 
 
 
 
 
 
 
 
 
 

Finally, produce the list of two-symbol sentences by zig-zagging through the table. 
 
Exercise:  Describe a method for listing the three-symbol sentences.  (Hint:  Think “three 
dimensions”.) 
 
Note:  When it comes to listing, say, the seven-symbol sentences, the easiest thing might 
be just to describe a method for listing all strings of seven symbols of L and then say, 
“Go through the list of seven-symbol strings and add to the list of seven-symbol 
sentences each of those that happens to be a sentence of L.” 
 
One more note about constructing such lists:  If we really want to imagine generating the 
list of sentences, we cannot suppose that we are “given” a bunch of tables each of which 
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2nd     

3rd     
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L3: Truth-functional Completeness 12/31/13 Page 52 

 
 

has infinitely long columns and infinitely long rows.  Rather, we have to imagine we 
have a set of instructions that allows us to add a cell to each of the tables we are using as 
we need it. 
 
 
Proof of completability of formally consistent sets. 
 

Let B be formally consistent.  
Let A0, A1, A2, …  be an enumeration of all atomic and quantified sentences. (This 
can be produced by producing, as described above, a list of all sentences and then 
picking out the ones that are either atomic or quantified.) 
 
Define M thus:   
Let B0 = B. 
For each i ≥ 0, let Bi+1 = Bi ∪ {Ai} if Bi ∪ {Ai} | –/  tt ⊥. 
Otherwise, let Bi+1 = Bi. 

Let M = B0 ∪ B1 ∪ B2 ∪ . . .  = 
      

€ 

Bi
i=0

∞

 .  (Clearly, B ⊆ M.) 

(In other words, S ∈ M if and only if S ∈ B0 or S ∈ B1 or S ∈ B2 or … .)  
 
M is formally consistent. 
Suppose not.  That is, M | –  tt ⊥.   
Since proofs are finite, there is a smallest j such that Bj | –  tt ⊥. 
But by the construction, there is no such j. 
(The fact that proofs are finite means that only finitely many members of M are used 
in the proof.  So we can pick the smallest j such that Bj includes them all.) 
 
M is formally complete. 
That is to say, for all sentences S in L, M | –  tt S or M | –  tt ¬S. 
We prove this by induction. 
 
Basis:   

Suppose Aj is an atomic or quantified sentence and j is its place in the enumeration.   
Suppose M | –/  tt Aj.  In that case, by the construction of M, Bj ∪ {Aj} | –  tt ⊥.   
So by ¬-Intro, Bj | –  tt ¬Aj. So M | –  tt ¬Aj. 
So either M | –  tt Aj or M | –  tt ¬Aj. 
 

Induction hypothesis:  Suppose for arbitrary Q and R of L, M | –  tt Q or M | –  tt ¬Q and 
M | –  tt R or M | –  tt ¬R. 

 
Induction step:   
 
(¬) Suppose P = ¬Q.   
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 By the induction hypothesis, M | –  tt Q or M | –  tt ¬Q.   
 Case (i):  M | –  tt ¬Q.  So M | –  tt P. 

Case (ii):  M | –  tt Q.  So we have a proof like 〈M, …, Q〉.   
 Using ⊥-Intro, ¬-Intro and ¬-Elim, we can construct a proof like 

〈M, 〈¬Q, …, Q, ⊥〉, ¬¬Q〉.  
 So M | –  tt ¬¬Q.  So M | –  tt ¬P. 

 So in both cases, we have either M | –  tt P or M | –  tt ¬P. 
 
(→) Suppose P = (Q → R). 
 Case (i):   M | –  tt ¬Q.  In that case, we can construct a proof like this: 
  〈M, …, ¬Q, 〈Q, 〈¬R, ⊥〉, ¬¬R, R〉, (Q → R)〉. 
  So M | –  tt (Q → R). 

Case (ii):   M | –  tt R.  In that case, we can construct a proof like this: 
 〈M, 〈Q, …, R〉, (Q → R)〉. 
 So M | –  tt (Q → R). 
Case (iii):  By the induction hypothesis, if cases (i) and (ii) do not hold, then 
 M | –  tt Q and M | –  tt ¬R.  In that case, we can construct a proof like 
 this:  〈M, 〈(Q → R), …, Q, R, …, ¬R, ⊥〉, ¬(Q → R)〉. 
 So M | –  tt ¬(Q → R). 
So in all cases, we have either M | –  tt (Q → R) or M | –  tt ¬(Q → R). 
 

This completes the proof of the Truth-functional Completeness Theorem. 



Lesson 4:  The Completeness Theorem for First-order Logic 
 
Now we want to prove the completeness theorem for first-order logic: 
 
If A | =   Q, then A | –    Q. 
 
Recall that A | –   Q means that where A is a set of sentences in the language L and Q is a 
sentence in the language L, there is a proof of Q from the sentences in A (using any of 
our introduction and elimination rules).  Here we are thinking of L as a specific first-
order language.  When we need to be specific about the language, we will write, A | –L    Q. 

 
We have already proved that if A | =  tt Q, then A | –  tt Q.  So what we want to do now is 
“extend” that result from truth-functional validity to first-order validity. 
 
Let L+ be a language just like L except that it contains denumerably many additional 
individual constants beyond those that L contains.  (We will also call individual constants 
names or just constants.) 
 
So A | –L+  Q will mean that where A is a set of sentences in L+ and Q is a sentence in L+, 

Q can be derived from sentences in A using our introduction and elimination rules (i.e., 
there is a proof in L+ using those rules). 
 
Where P is a well-formed formula of a first order language L, and n is an individual 
constant of L, and v is a variable of L, Pn/v, as before (in Lecture 2), is the result of 
substituting n for v wherever v occurs free in P.  For example, ∃xRxy a/y = ∃xRxa. 
 
Outline of proof: 
 
We will show how to construct a set of sentences H (called the Henkin theory) in the 
language L+ that meets the following conditions: 
 
(i)  The Elimination Theorem: 
  
 Where A is a set of sentences of L (the original language) and Q is a sentence of L,  
 if A ∪ H | –L+   Q, then A | –   Q (i.e., A | –L    Q). 

  
 (In other words, everything that we can prove (in L) with the help of H (in L+), we 

can prove without it.  Only the members of H contain the extra constants of L+.) 
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 (ii) The Henkin Construction Theorem: 
  
 For every truth value assignment val, if for all P ∈ H, Val(P) = T, then there is a 

structure Mval such that for all P of L+, if Val(P) = T, then P is true in Mval. 
  
 (In other words, if a truth value assignment Val assigns truth to every member of H, 

then there is a first-order structure that assigns truth to every sentence that Val 
assigns truth to. Recall that for any truth value assignment (to noncompound 
sentences) val, Val extends val to the rest of the language.  I write “Mval” as a 
mnemonic, tell help you remember that it’s the structure that corresponds to val.) 

 
Suppose we can establish the existence of such an H.  The completeness theorem can 
then be proved as follows: 
 
Proof of the Completeness Theorem for First-Order Logic given a Henkin theory: 
 
Suppose A | =   Q, where A is a set of sentences of L and Q is a sentence of L. 
Then there is no structure Mval such that every member of A ∪ {¬Q} is true in Mval. 
Then by the Henkin Construction Theorem, there is no truth value assignment val such 
that for every P ∈ A ∪ H ∪ {¬Q}, Val(P) = T. 
So A ∪ H | =   tt Q. 
By the Truth-functional Completeness Theorem (applied to the language L+),  
A ∪ H | –L+   tt Q. 

So (since every proof that does not use the quantifer and identity rules is still a proof 
when those are available),  
A ∪ H | –L+   Q. 

So by the Elimination Theorem, 
A | –    Q. 
 
Some useful propositions: 
(Assume that | –    is the syntactic consequence relation for an arbitrary first-order 
language.) 
 
Proposition 1 (the Deduction Theorem): 
If A ∪ {P} | –    Q, then A | –   (P → Q). 

Proof: Exercise. 
 
Proposition 2 (Syntactic Cut): 
If (i) A ∪ {P1, P2, …, Pn} | –    Q and (ii) for all i, 1 ≤ i ≤ n, A | –   Pi, then A | –   Q.   
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(Compare the lemma called “Semantic Cut” in L2.) 
Proof:   
Suppose we have a proof like this: 
〈A ∪ {P1, P2, …, Pn}, …, Q〉. 
By Proposition 1, applied n times, we have a proof like this: 
〈A, …, (P1 → (P2 → ( … (Pn → Q)…)〉. 
By (ii), we have a proof like this: 
〈A, …, (P1 → (P2 → ( … (Pn → Q)…), P1, P2, …, Pn〉. 
So by n applications of →Elim, we have a proof like this: 
〈A, …, Q〉. 

 
Proposition 3 (Lemma 7 in Barwise and Etchemendy, p. 536): 
(1)  If A | –   (P → Q) and A | –    (¬P → Q), then A | –   Q. 
(2)  If A | –    ((P → Q) → R), then A | –   (¬P → R) and A | –   (Q → R). 

Proof:   
Part (1):  We know A ∪ {(P → Q), (¬P → Q)} | –   Q.  So (1) follows by Prop. 2. 
Part (2):  Exercise. 

 
Proposition 4 (comparable to Lemma 8 in Barwise and Etchemendy, p. 536):  
Suppose n does not occur in P, Q or any member of A.   
Then if A | –    (¬Pn/v → Q), then A | –   (¬∀vP → Q). 

Proof:  Note:  This where we use ∀-Intro. 
Suppose we have a proof like this: 
〈A, …, (¬Pn/v → Q)〉. 
Then we can construct a proof like this: 
〈A, 〈¬∀vP, 〈¬Q, 〈n, 〈¬Pn/v, …, (¬Pn/v → Q), Q, ⊥〉, ¬¬Pn/v, Pn/v〉, ∀vP, ⊥〉, 
¬¬Q, Q〉, (¬∀vP → Q)〉. 

Note:  This is where, in the proof of the completeness theorem, we use ∀-Intro. 
 
Proposition 5 (compare Lemma 9 in Barwise and Etchemendy, p. 537): 
Suppose n does not occur in P, Q or any member of A. 
Then if A ∪ {(Pn/v → ∀vP)} | –   Q then A | –   Q. 

Proof: 
Suppose A ∪ {(Pn/v → ∀vP)} | –   Q. 
By Proposition 1, A | –   ((Pn/v → ∀vP) → Q). 
By Proposition 3 part (2),  

(i)    A | –    (¬Pn/v → Q), and 
(ii)   A | –    (∀vP → Q). 

From (i), by Proposition 4, 
(iii)  A | –    (¬∀vP → Q). 
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From (ii) and (iii), by Proposition 3, part (1), 
(iv) A | –    Q. 

 
Proposition 6 (compare Lemma 10 in Barwise and Etchemendy, p. 537): 
A | –    (∀vP → Pn/v), and 
A | –    ((Pn/v ∧ n = m) → Pm/v), and 
A | –    n = n, and  
if P does not contain v free, then A | –    (P → ∀vP). 

Proof: Exercise.  This is where we use ∀-Elim and =-Elim and =-Intro. 
 
Now we need to construct the Henkin theory.  But first we need to construct the language 
of the Henkin theory, L+.  We will do this in stages.  At each stage, we construct not only 
a new language, but also a witness function for that language. 
 
Suppose we have a table of individual constants not in L: 
 
n00 n10 n20 n30 … 
n01 n11 n21 n31 … 
n02 n12 n22 n32 … 
n03 n13 n23 n33 … 
 :  :  :  :  
 
In other words, each of the extra constants of L+ should have place in this table so that 
we can identify it by its “double subscript”.  We will think of a language now as a set that 
includes all of the basic vocabulary and all of the wffs that can be built of from that 
vocabulary in accordance with the definition of a wff. 
 
We further suppose that for any language we can produce an enumeration (a one-
dimensional list) of all the formulas of that language containing exactly one free variable. 
 
We now define a whole series of languages starting with L and culminating in L+. 
 
Let L0 = L. 
 
Let w0 be a function such that if P0j is the jth formula in an enumeration of the formulas 

of L0 having exactly one free variable, then w0(P0j) = n0j. 

 
For each i ≥ 0, let  
 Li+1 = Li ∪ {wi(P) | P is a wff of Li with exactly one free variable}. 
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(Notation:  In general, {f(x) | . . . x . . .} stands for the set of things that result from 
applying function f to the things that satisfy the condition . . . x . . . .  So{wi(P) | P is a 
wff of Li with exactly one free variable} is the set of names that result from applying wi 
to the formulas of language Li with exactly one free variable.) 
 
For each i ≥ 0, let 
 
  wi(P) if P is a wff of Li containing exactly one free variable. 
 wi+1(P) =    
  n(i+1)j if P is the jth wff in an enumeration of the wffs having exactly   
                            one free variable that are in Li+1 but not in Li. 
 
So the construction alternates between constructing the next language and constructing 
the next function.  At each stage the sentences of the language constructed at that stage 
will contain all wffs that can be grammatically constructed using the witnesses for the 
formulas of every previous stage. 
 

Let L+ = 
        

€ 

Li
i=0

∞

 . (In other words, the union of L0, L1, L2, …) 

Let w = 
      

€ 

wi
i=0

∞

 . 

(In defining a function through unions, we are thinking of functions as sets of ordered 
pairs.) 
 
The situation can be illustrated in a diagram: 
(“dob” stands for date of birth.) 
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 …  L2  L1  L0  dob1 dob2 dob3 dob4 … 
 … P20 P10 P00 n00 n10 n20 n30 … 
 … P21 P11 P01 n01 n11 n21 n31 … 
 … P22 P12 P02 n02 n12 n22 n32 … 
 … P23 P13 P03 n03 n13 n23 n33 … 
 …     

€ 

      

€ 

     

€ 

     

€ 

     

€ 

     

€ 

     

€ 

  
 
 
 
 
 
 
 
If w(P) = n, write cP for n.  So w(P) = cP.  cP is a witness for P.  Notice that by our 
construction, we have ensured that for every formula of L+ that has one free variable, 
that formula has such a witness. 
 
We can define the Henkin theory H as follows: 
 
(1)  for some name n, Q = n = n, or 
(2) P is a wff that does not contain v free, and Q = (P → ∀vP) or Q =  (∀vP → P). 
(3) P is a wff of L+ containing v free, and either 

(a) for some names m and n, Q = ((Pn/v ∧ n = m) → Pm/v), or 
(b) for some name n, Q =  (∀vP → Pn/v), or 
(c) Q =  (PcP/v → ∀vP). 

 
Notice the use of “cP” in this definition. 
 
Think of “((Pn/v ∧ n = m)” as an abbreviation for “(¬(Pn/v → ¬n = m)”. 
 
In the case where v is free in P, say that (PcP/v → ∀vP) is the witnessing axiom for cP.   
 

w0 
P00 

w1 

w2 

Add this column to L0 to form L1 

An enumeration of the formulas of L1 not also in L0 

An enumeration of the formulas of L2 not also in L1 
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If n is a constant in L0 (=L), then the birth date of n is 0. 
If P is a formula in L0 and w0(P) = n, say that the birth date of n is 1. 
For i > 0, if P is a formula in Li but not in Li–1, and wi(P) = n, say that i + 1 is the birth 
date of n.  
 
dob(n) = i if and only if the birth date of n is i. 
 
In other words, the date of birth (dob) of a name is i iff Li is the first language in the 
series containing formulas containing that name. 
  
Observation: 
If for some i ≥ 0, dob(n) = i + 1, then n does not occur in any wff in any of L0, L1, L2, …, 
Li. 
 
The Independence Lemma: 
 
If cP is not cQ (cP ≠ cQ) and dob(cP) ≤ dob(cQ), then cQ is not in the witnessing axiom for 
cP. 

 
Proof: 
Case 1: dob(cP) < dob(cQ) = i + 1.  In this case, the witnessing axiom for cP belongs 
to a language earlier than Li+1.  So by Observation above, cQ is not in it. 
Case 2: dob(cP) = dob(cQ) = i + 1.  In that case wi(P) = cP and wi(Q) = cQ.  So P and 
Q belong to Li.  So cQ is not in P and cP is not in Q.  So cQ is not in (PcP/v → ∀vP) 
and cP is not in (QcQ/v → ∀vQ).   
(We ignore the case in which dob(cP) = dob(cQ) = 0, because no witness has birth 
date of 0.) 

 
Finally, we are in a position to prove the Elimination Theorem. 
 
The Elimination Theorem: 
Where A is a set of sentences of L (the original language) and Q is a sentence of L,  
if A ∪ H | –L+   Q, then A | –   Q.   

 
Proof:  By induction on the maximum number k of members of H used (cited) in the 
proof of Q from A ∪ H.   
 
Basis:  k = 0.  Trivial.  If no members of H are used in proving Q from the sentences 
in set A, then of course Q can be derived from A without the sentences in H.  That 
proof may contain names in L+ not in L.  For example, they might be introduced as 
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“new names” for a ∀-Intro step.  However given that proof we can certainly find 
another one containing exclusively names in L, by substituting an unused name in L 
for each name in L+ not in L wherever it occurs in the proof.   
 
Induction hypothesis:  Suppose that the thesis holds when at most k members of H are 
used in the derivation of Q from A ∪ H. 
 
Induction step:  Show that the thesis holds when k + 1 members of H are used in the 
derivation.  Let U be the members of H that are used.    
 
Case 1:  At least one member of U is not a witnessing axiom.  (It is a sentence of one 
of the following forms: (∀vP → Pn/v), ((Pn/v ∧ n = m) → Pm/v), n = n, or, where 
P does not contain v free, (P → ∀vP).)  By Proposition 6, we can prove that member 
from A and the remainder of U.  This brings the number of members used down to k; 
so by the induction hypothesis, the thesis holds. 
 
Case 2:  All of the members of U are witnessing axioms, i.e., of the form: 
     

(PcP/v → ∀vP) 
 
So each member of U contains a witness for some formula.  Since U is finite, we can 
find a witness in a sentence in U that has a latest birth date (i.e., a birth date such that 
for every other witness in a sentence in U, its birth date is no later).  Call this witness 
cP*.  So there is some formula P* such that w(P*) = cP*, and U contains  
 

(P*cP*/v → ∀vP*). 
 

Since cP* is not in L, cP* occurs in no member of A and does not occur in Q.  By the 
Independence Lemma, cP* occurs in no other member of U either. 
 
Let U* be the set containing every member of U other than (P*cP*/v → ∀vP*).  By 
Proposition 5, there is a proof of Q from A ∪ U*. The number of members of H that 
are used in this proof will be no greater than k.  So by the induction hypothesis, the 
thesis holds. 
 
End of proof. 
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All that remains is to prove the Henkin Construction Theorem. 
 
Lemma: The Equivalence of Identicals: 
If val is a truth value assignment for L+ such that for all P ∈ H, Val(P) = T (val satisfies 
H), then for all constants n, m, and o of L+, then  
(i) val(n = n) = T, and 
(ii) if val(n = m) = T then val(m = n) = T, and 
(iii) if val(n = m) = T and val(m = o) = T, then val(n = o) = T. 
(In other words, the relation between constants of flanking a true identity is an 
equivalence relation.) 
Proof: Exercise.  (Hint:  Look at the sentences that have to be in H by the definition of 
that set.) 
 
Define [n] = {m | m is a constant of L+ and val(n = m) = T}.  Call this the equivalence 
class for n relative to val.  In other words, [n] is a set of names, containing every name m 
such that n = m is true according to val. 
 
Proposition 7: 
If for all P ∈ H, Val(P) = T, then {〈[n], [m]〉 | val(n = m) = T} is an identity relation.  
(I.e., if val(n = m) = T, then [n] = [m].) 

Proof:  Suppose not.  Then there are n and m such that val(n = m) = T, but [n] ≠ [m]. 
Case 1:  There is a constant o such that o ∈ [n] but o ∉ [m].  In that case, val(n = o) 
= T, but val(m = o) ≠ T.  By Equivalence of Identicals (ii), val(m = n) = T.  So by 
Equivalence of Identicals (iii), val(m = o) ≠ T.  Contradiction. 
Case 2: There is a constant o such that o ∈ [m], but o ∉ [n].  Similarly. 
 

Proposition 8: 
If for all P ∈ H, Val(P) = T and [n] = [o], then val(n = o) = T. 

Proof:  Suppose for all P ∈ H, Val(P) = T and [n] = [o].  So suppose, for a reductio, 
that val(n = o) ≠ T.  In that case, o ∉ [n].  But by the Equivalence of Identicals (i), 
n ∈ [n].  So, contrary to assumption, [n] ≠ [o]. 
 

Proposition 9: If for all P ∈ H, Val(P) = T and [n] = [o] and Val(Pn/v) = T, then 
Val(Po/v) = T.  Proof: Exercise.  (Hints:  Think about the definitions of [n] and H.) 
 
The Satisfaction Lemma: 
For every structure M, every variable assignment g, and every formula Q, g[v/Σ(n)] 
satisfies Q in M if and only if g satisfies Qn/v in M.  (g[v/Σ(n)] assigns to v the object 
that Σ assigns to n.)  (This is the same as the Naming Lemma (2) of L2.) 
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Proof:  By induction on the complexity of wffs.   
 
Basis: Suppose Q = Rt1t2...tm.   
Case 1:  For every i, 1 ≤ i ≤ m, ti ≠ v.  So Qn/v = Q.   
〈h[v/Σ(n)](t1), h[v/Σ(n)](t2), …, h[v/Σ(n)](tm)〉 = 〈h(t1), h(t2), …, h(tm)〉.   
Case 2: For some i, 1 ≤ i ≤ m, ti = v.  So Qn/v = Rt1t2...n…tm. 
〈h[v/Σ(n)](t1), …, h[v/Σ(n)](v), …, h[v/Σ(n)](tm)〉 = 〈h(t1), …, Σ(n),…, h(tm)〉 =  〈h(t1), 
…, h(n),…, h(tm)〉. 
 
Induction hypothesis:  Suppose the thesis holds for Q and R. 
 
Induction step: 
(¬): Suppose P = ¬Q.  Since, by the induction hypothesis, g[v/Σ(n)] satisfies Q in 

M if and only if g satisfies Qn/v in M, g[v/Σ(n)] satisfies P in M if and only if 
g satisfies Pn/v in M. 

(∨):  Similarly. 
(∀): Suppose P = ∀uQ.    

Case (i):  u ≠ v.  By the induction hypothesis, for all o ∈ DM, g[v/Σ(n)][u/o] 
satisfies Q if and only g[u/o] satisfies Qn/v.  So g[v/Σ(n)] satisfies ∀uQ  
if and only if g satisfies ∀u[Qn/v] = [∀uQ]n/v.  (This identity holds 
because u ≠ v.)  So g[v/Σ(n)] satisfies P if and only if g satisfies Pn/v. 

Case (ii): u = v.  So g[v/Σ(n)][u/o] = g[u/o].  So, trivially, for all o ∈ DM, 
g[v/Σ(n)][u/o] satisfies Q if and only if g[u/o] satisfies Q.  So g[v/Σ(n)] 
satisfies ∀uQ if and only if g satisfies ∀uQ.  But also P = ∀uQ = (since 
v = u is bound) [∀uQ]n/v = Pn/v.  So g[v/Σ(n)] satisfies P if and only if g 
satisfies Pn/v. 

 
 

Next,  we will do an inductive proof that uses the concept of the complexity of a 
sentence.  So first, we need to extend the definition of complexity from Lesson 2 to cover 
the case of quantified sentences (and swap → for ∨).  Thus: 
 

Atomic sentences have complexity 0. 
If a sentence P has complexity n, then ¬P has complexity n+1. 
If out of the two sentences P and Q, the complexity of the one with the greatest 

complexity is n, then the complexity of (P → Q) is n+1. 
If Qn/v has complexity n, then ∀vQ has complexity n + 1. 
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The Henkin Construction Theorem: 
For every truth value assignment val, if for all P ∈ H, Val(P) = T (i.e, val tt-satisfies H), 
then there is a structure Mval such that for all P of L+, if Val(P) = T, then P is true in 
Mval. 
 

Proof:  Suppose that truth value assignment val that satisfies H.  We show how to 
construct Mval and then we prove something stronger, viz., for every sentence P of 
L+, Val(P) = T if and only if P is true in Mval.  We prove the latter by induction on 
the complexity of sentences. 

 
First part: Construction of Mval. 
Mval = 〈D, Σ〉. 
D = {[n] | n is a constant of L+}.  ([n] is defined in terms of the given val.) 
For every constant n of L+, Σ(n) = [n]. 
For every m-place predicate R of L+,  

Σ(R) = {〈[n1], [n2], …, [nm]〉 | val(Rn1n2...nm) = T}. 
 
Nota bene:  We are interpreting our language in a domain of objects that are 
equivalence classes of names of that same language! 
 
We have to check to make sure that Mval so defined really is a structure for L+.  The 
domain of Mval is nonempty and, by Proposition 7, Σ(=) is the identity relation on the 
domain of Mval.  So yes, it is. 
 
Second part: The induction. We prove that Val(P) = T if and only if P is true in Mval. 
 
Basis: Suppose P is atomic; i.e., P = Rn1n2...nm. 
 
Left-to-right:  Suppose Val(P) = val(Rn1n2...nm) = T. By the construction of Mval, 
〈[n1], [n2], …, [nm]〉 ∈ Σ(R), and so 〈Σ(n1), Σ(n2), …, Σ(nm)〉 ∈ Σ(R).  So Rn1n2...nm 
= P is true in Mval. 
 
Right-to-left:  Suppose P = Rn1n2...nm is true in Mval.  By the definition of Σ, 
〈Σ(n1),  Σ(n2), …, Σ(nm)〉 = 〈[n1], [n2],…, [nm]〉 ∈ Σ(R).  So by the definition of Σ(R), 
there are names o1, o2, . . . om, such that [o1] = [n1], [o2] = [n2], …, [om] = [nm], and 
val(Ro1o2...om) = T.  But in that case, by Proposition 9, val(Rn1n2...nm) = Val(P) = T. 
Induction hypothesis:  Suppose that the thesis holds for sentences having complexity 
less than or equal to k.   
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Induction step: Show that the thesis holds for sentences having complexity k + 1. 
 
Case ¬:  P = ¬Q.  Exercise. 
 
Case →:  P = (Q → R). Val((Q → R)) = T if and only if Val(Q) = F or Val(R) = T, 
which (by the induction hypothesis) is so if and only if Q is false in Mval or R is true 
in Mval, which is so if and only if (Q → R) is true in Mval. 
 
Case ∀:  P = ∀vQ.  We need to show that Val(∀vQ) = T if and only if ∀vQ is true in 
Mval. 
 

Left-to-right:  Suppose Val(∀vQ) = T. 
Since for all constants n in L+, (∀vQ → Qn/v) ∈ H, 
for all n in L+, Val((∀vQ → Qn/v)) = T. 
So by the definition of Val, for all n in L+, Val(Qn/v)) = T. 
By the induction hypothesis, for all n in L+, Qn/v is true in Mval. 
So for all n in L+, g∅ satisfies Qn/v. 
So, by the Satisfaction Lemma, for all n in L+, g∅[v/Σ(n)] satisfies Q. 
By the construction of Mval, for every o ∈ D, there is an n in L+ such that Σ(n) = o. 
So for all o ∈ D, g∅[v/o] satisfies Q. 
So g∅ satisfies ∀vQ. 
So ∀vQ is true in Mval. 
 
Right-to-left: Suppose ∀vQ is true in Mval. 
For every o ∈ D, g∅[v/o] satisfies Q. 
By the construction of Mval, for every constant n in L+, there is an object o ∈ D 
such that Σ(n) = o. 
So for all n in L+, g∅[v/Σ(n)] satisfies Q. 
So, by the Satisfaction Lemma, for all n in L+, g∅ satisfies Qn/v. 
In particular, g∅ satisfies QcQ/v (cQ being the witness for Q.  Recall that in case v 
is not free in Q, QcQ/v is Q). 
So QcQ/v is true in Mval. 
By the induction hypothesis, Val(QcQ/v) = T. 
But since (QcQ/v → ∀vQ) ∈ H, Val((QcQ/v → ∀vQ)) = T. 
So, by the definition of Val, Val(∀vQ) = T. 

 
 End of proof. 
 
This completes the proof of the Completeness Theorem for first-order logic. 
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Exercise: Where A is a set of sentences of L and Q is a sentence of L, and H is the 
Henkin Theory for L (in L+), show that A | –   Q if and only if A ∪ H | –  tt Q.   
Hint:  No inductions are called for.  Assume the Soundness Theorem, as well as the 
Truth-functional Completeness Theorem.  Use the Elimination Theorem and the stronger 
biconditional that we proved in order to prove the Henkin Construction Theory (Val(P) = 
T if and only if P is true in Mval). 
 
 
The Compactness Theorem: 
 
Say that a set A of sentences of L is first-order satisfiable (or first-order consistent, or 
just satisfiable) if and only if there is a first-order structure M such that every sentence in 
A is true in M (in which case M first-order satisfies A). 
 
Here’s the theorem:  Suppose that A is a set of sentences of L such that for all sets of 
sentences B, if B is finite and B ⊆ A, then B is first-order satisfiable.  Then A is first-order 
satisfiable as well. 
 

Proof:  Assume the hypothesis, and suppose, for a reductio, that A is not satisfiable.   
Then A | =   ⊥.   
By completeness, A | –   ⊥. 
But proofs are finite.  So there is a finite set B ⊆ A, such that B | –   ⊥. 
By soundness, B | =   ⊥. 
So B is not satisfiable, contrary to the supposition. 
So A is satisfiable. 
 

Alternative formulation:  Suppose that A is a set of sentences of L and Q is a sentence of 
L, and A | =   Q.  Then there is a finite subset B of A such that B | =   Q. 
Exercise 1: Prove the Compactness Theorem in its alternative formulation. 
Exercise 2: Prove that this alternative formulation is equivalent to the first formulation. 
(Using the alternative formulation, prove the compactness theorem, and using the 
Compactness Theorem prove the alternative formulation.  You do not need to use any of 
our “big” theorems; just use definitions.  Prove each in “contrapositive form”.) 
 
This Compactness Theorem may not seem like a very exciting result, but it will be 
exciting to discover (as we will in Lesson 13) that satisfiability for second-order 
languages is not compact. 
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Some background on the concept of infinity 
 
One kind of infinity is that of the natural numbers, 0, 1, 2, …  Any set that can be put into 
one-one correspondence with the natural numbers is said to be denumerable.  A set is 
said to be countable if it is either finite or denumerable.  For example, the set of even 
positive integers is denumerable too, even though not all natural numbers are even: 
 

0 1 2 3 … 
| | | | 
2 4 6 8 … 
 

The set of nonnegative rational numbers is denumerable as well.  Every nonnegative 
rational number greater than 0 appears in the following table: 
 

 1 2 3 … 

1 1/1 1/2 1/3 … 

2 2/1 2/2 2/3 … 

3 3/1 3/2 3/3 … 

  

€ 

   

€ 

   

€ 

   

€ 

  

 
By zig-zagging through this table, we can put the natural numbers into one-one 
correspondence with the nonnegative rational numbers.  (Skip duplicates.) 
 
 0 1 2 3 4 5 6 … 
 | | | | | | |  
 0 1/1 2/1 1/2 1/3 3/1 4/1 …  
 
However, there are infinite sets that cannot be put into one-one correspondence with the 
natural numbers.  For example, the set of all subsets of the natural numbers cannot be put 
into one-one correspondence with the natural numbers.   
 
The set of a subsets of a set is called the power set of that set.  In fact, no nonempty set 
can be put into one-one correspondence with its own power set.  (This is known as 
Cantor’s Theorem.) 
 

Proof:  By reductio.  Suppose that f is a one-one function from the members of A into 
its power set.  Define the following set: 
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B = { n | n ∈ A and n ∉ f(n)} 

 
But B is a subset of A.  So, by the supposition, there exists a member of A, b, such 
that f(b) = B.  Question:  Does b belong to B?  If yes, then no.  (If b ∈ B, then b ∉ f(b) 
= B.)  If no, then yes.  (If b ∉ B, then, since b ∈ A, b can be disqualified from 
membership in B only because b ∈ f(b).  But f(b) = B; so b ∈ B after all.)  So yes if 
and only if no.  Contradiction!  So we were mistaken in thinking that there was any 
such function f. 

 
Likewise, there is no 1-1 correspondence between the natural numbers and the 
nonnegative real numbers.  In fact, there is a 1-1 correspondence between the 
nonnegative real numbers between 0 and 1 and the power set of the set of natural 
numbers.  (Can you prove it?  Hint:  Write the real numbers in base 2 and think of the 1’s 
and 0’s as saying “yes” and “no” to each natural number.  Incidentally, the set of 
nonnegative real numbers can be put into 1-1 correspondence with the set of all real 
numbers.) 
 
If two sets can be put in 1-1 correspondence, then they are said to have the same 
cardinality.  So the point is:  There are many infinite cardinalities. 
 
The set of sentences of L is denumerable.  That’s what we found out when we devised a 
method for listing the sentences of L one after the other (in Lesson 3).  In fact, even if 
there are denumerably many different languages and denumerably many sentences in 
each of them, the set consisting of all sentences in all languages is denumerable.  
(Exercise:  Think of a zig-zag procedure that would list them all.) 
 
So now you know that there are various kinds of infinity.  There’s the infinity of the 
natural numbers (denumerable infinity), the infinity of the nonnegative real numbers (the 
continuum), and so on.  This fact raises the following question:  For any given kind of 
infinity, can we construct a set of sentences such that it is satisfiable only in a domain 
having at least that kind of infinity?   
 
Well, we can certainly construct a set of sentences – even a very simple, finite set of 
sentences – that is satisfiable only in structures having denumerable domains.  Consider, 
for instance, the following three sentences:   
 

∀x¬Rxx 
∀x∃yRxy 
∀x∀y∀z((Rxy ∧ Ryz) → Rxz) 
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To see that these three sentences are jointly satisfiable only in a domain containing at 
least denumerably many members, think of R as meaning “larger than”.   
 
So can we likewise construct a set of sentences that is satisfiable only in domains having 
least as many members as the set of nonnegative real numbers?  Surprisingly, the answer 
is no.  The following theorem proves it: 
 
The (downward) Löwenheim-Skolem Theorem: If a set of sentences of L is first-order 
satisfiable, then it is first-order satisfiable in a structure with a countable domain. 
 
Observation 1:  If A is first-order satisfiable, then A | –/   ⊥.  For if A is first-order 
satisfiable, then A | =/    ⊥, which, by the soundness theorem, implies that A | –/   ⊥.  
 
Observation 2:  Our proof of the Henkin Construction Theorem proves something 
stronger:  For every truth assignment val that tt-satisfies H, there is a first-order structure 
Mval such that: 
(1) for all sentences P in L+, Val(P) = T if and only if P is true in Mval, and 
(2) Mval has a countable domain (either finite or denumerable). 
 

(2) is so, because the domain of Mval is D = {[n] | n is a constant of L+} and there are 
denumerably many constants in L+. 

 
Proof of the (downward) Löwenheim-Skolem Theorem:  
Suppose A is first-order satisfiable.    
By the First Observation, A | –/   ⊥. 
So by the Elimination Theorem (where H is the Henkin theory in L+), A ∪ H | –/ L+   ⊥. 
So A ∪ H | –/ tt   ⊥. 
By the Truth-functional Completeness Theorem, A ∪ H | =/ tt   ⊥. 
So there is a truth value assignment val such that for all P ∈ A ∪ H, Val(P) = T.   
So, by Observation 2, there is a first-order structure Mval with a countable domain 
such that for all P of L+, if Val(P) = T, then P is true in Mval. 
Mval is a first-order structure with a countable domain that first-order satisfies A.   

 
Note 1:  What Skolem actually proved, in 1919, was that if a set of sentences is first-
order satisfied in a structure with a nondenumerable domain, then it is first-order 
satisisfied in a structure that is a restriction of the first to a countable domain.  (For a 
proof, see Boolos and Jeffrey, chapter 13, or Boolos, Burgess and Jeffrey.) 
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Note 2:  What I have here called the Löwenheim-Skolem theorem is also called the 
downward Löwenheim-Skolem theorem to distinguish it from the upward Löwenheim-
Skolem theorem, which says that if a set A of sentences of L is satisfiable in any structure 
having an infinite domain, then for any infinite set, A is satisfiable in a structure having 
the same cardinality as that set.  We will not prove this, but it will come up again in our 
discussion of second-order logic in lesson 13. 
 
Note 3: Suppose that M and N are two first-order structures for a language L.  Let map 
be a 1-1 function whose domain (the set of inputs) is the domain M and whose range (the 
set of outputs) is the domain of N.  Then we say that M and N are isomorphic if and only 
if: 
 

(i) for all constants c of L, Σ
M

(c) = o if  and only if  Σ
N
(c) = map(o), and 

(ii) for all n-ary predicates P of L, 〈o1, o2, …, on〉 ∈ Σ
M

(P) if and only if  
 〈map(o1), map(o2), …, map(on)〉 ∈ Σ

N
(P). 

 
A simple proof by induction shows that if two first order structures are isomorphic, then 
for any set of sentences T of L either both are models for T or neither is. 
 
Suppose that T is a set of sentences such that if M and N are any two structures that first-
order satisfy T, then M and N are isomorphic.  This property is called categoricity.  A set 
of sentences that has it is a categorical theory.  Are there any sets of sentences that are 
categorical in this sense?  If a set of sentences is satisfied only by structures having finite 
domains, then the answer is, yes.  (There might be a sentence in T that tells us exactly 
how many objects there are.)  But if a theory is satisfied only by structures having infinite 
domains, then the answer is, no.  If a theory is satisfiable only by structures having 
infinite domains, then it will be satisfiable in nonisomorphic structures with infinite 
domains.  This is an immediate consequence of the upward Löwenheim-Skolem theorem.  
However, in second-order languages we can write categorical sets of sentences. 
 



Lesson 5:  Preliminaries Before We Take On Gödel-
incompleteness 
 
 
Function symbols 
 
We need to add some vocabulary to the language of first-order logic and augment the 
definition of satisfaction to allow for it.  Shortly, we will be talking about the language of 
arithmetic, which will include vocabulary like “+” and “×”, which are symbols for 
functions. 
 
 
The syntax of function symbols: 
 
Recall that the terms of a first-order language L include the individual constants (names) 
and individual variables of the language.  Now we will define the set of terms of L as 
follows: 
 
t is a term of L if and if either: 
(a) t is an individual constant of L, or 
(b) t is an individual variable of L, or 
(c) f is an n-place function symbol of L, t1, t2, … tn are terms of L and t = f(t1, t2, … tn). 
 
For example, if “+” and “×” are 2-place function symbols of L, then +(x, a) is a term of 
L, +(b, c) is a term of L,  and ×(+(b, c), +(x, a)) is a term of L.   
 
For convenience, we will write +(v, u) as (v + u) and ×(v, u) as (v × u). 
 
Wffs and sentences are defined as before, except that “terms” now includes terms of the 
new kind.  
 
 
The semantics of function symbols: 
 
Where D is a set of objects (a domain), we say that fun is an n-ary function on D if and 
only if fun is a set of n+1-tuples of members of D such that for all x and y, if 
〈o1, o2, …, on, x〉 ∈ fun and 〈o1, o2, …, on, y〉 ∈ fun, then x = y. 
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For example, in the domain of natural numbers the function addition = {〈0, 0, 0〉, 
〈0, 1, 1〉, 〈1, 0, 1〉, 〈0, 2, 2〉, 〈1, 1, 2〉,…}. 
 
To accommodate function symbols, we now extend the definition of an assignment, Σ

M
, 

so that if f is an n-place function symbol of L, then Σ
M

(f) is an n-ary function on D.   
 
We then define a term assignment h recursively, as follows: 
 
Where g is a variable assignment in M, and Σ is an assignment for M, and t is a term of 
L, h(t) = o if and only if either: 
(i) t is an individual variable and g(t) = o, or 
(ii) t is an individual constant and Σ(t) = o, or 
(iii) for some terms t1, t2, … tn and some function symbol f, and some n-ary function 

fun, t = f(t1, t2, … tn), and Σ(f) = fun and o = fun(h(t1), h(t2), …, h(tn)). 
 
For example, if Σ(2) = the number 2, and g(x) = the number 3, and Σ(+) = addition, then 
h(+(x, 2)) = the result of adding 3 and 2, i.e., 5. 
 
The rest of the definition of satisfaction by a variable assignment in a structure (from 
Lesson 1) can stand without change.  Likewise, the definition of truth and the definition 
of first-order consequence (from Lesson 1) are unchanged. 
 
Note:  Anything that can be said in a language with function symbols can be said in a 
language without them.  Instead of a two-place function symbol +, we could have a three 
place predicate Add.  And then, when we want to say, for example, that the sum of any 
number is greater than or equal to its addends, instead of saying, 
 

∀x∀y((x + y) ≥ x ∧ (x + y) ≥ y), 
 

we could say, 
 

∀x∀y∀z(Add(x, y, z) → (z ≥ x ∧ z ≥ y)). 
 

 
Axiom systems 
 
The style of doing proofs that you have learned is a “Fitch-style natural deduction 
system”.  (There are other kinds of natural deduction systems, e.g., Gentzen style.  See 
John N. Martin’s Elements of Formal Semantics for an approach to logic based on that.)   
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Another style of doing proofs is by means of an axiom system.  These are usually easier 
to state than natural deduction systems, but much harder to use.  But since they are easier 
to state, most metatheoretic work is formulated in terms of axiom systems.   
 
Usually, an axiom system is formuated as a number of axiom schemata and a number of 
inference rules: 
 
The axiom system PL (for “propositional logic”): 
 

Three axiom schemata: 
L1:  (P → (Q → P)) 
L2:  (P → (Q → R)) → ((P → Q) → (P → R)) 
L3:  ((¬P → ¬Q) → (Q → P)) 
 
Every wff having the form of L1, L2, or L3 is an axiom.  (There are infinitely many of 
these.) 
 
One inference rule:  
Modus Ponens (MP): Q is an immediate consequence of P and (P → Q). 
 
A proof in PL is a finite sequence of wffs such that each member of the sequence is 
either an instance of L1-L3 (an axiom) or is an immediate consequence of earlier 
members by Modus Ponens. 

 
The axiom system QL (Tarski 1965, Kalish and Montague 1965) 
 
Everything in PL, plus: 
 

Four more axiom schemata: 
L4:  (∀v(P → Q) → (∀vP → ∀vQ)) 
L5:  (P → ∀vP), provided v does not occur in P (vacuous quantification) 
L6:  ¬∀v¬v = t, where t is any term.  (In other words, ∃v v = t.) 
L7:  (v = t → (P → Q)), where P is an atomic formula, and Q results from P by 
 replacing any one occurrence of v in P with t.  
 
One more inference rule: 
Generalization: ∀vP is an immediate consequence of P. 
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A proof in FOL is a finite sequence of wffs such that each member of the sequence is 
either an instance of L1-L7 (an axiom) or is an immediate consequence of earlier 
members by Modus Ponens or Generalization.  If there is a proof having P as its last 
formula, we write | –   P.  In that case we also say that P is a theorem of QL. 
 

Note:  In two ways this concept of proof is different from what you are accustomed to. 
First, there are no premises.  So the conclusion of every proof is a logical truth.  Second, 
not only sentences, but also well-formed formulas containing free variables may belong 
to proofs and may be the thing proved.  (We can always derive a sentence from these by 
an application of Generalization.) 
 
Let P be any wff (not necessarily a sentence) of a first-order language L.  (Remember: L 
contains the identity sign.) We will say that P is first-order valid (| =   P) if and only if for 
every first-order structure M for L, and every variable assignment g in M, P is satisfied 
by g in M. 
 
Notice how this definition quantifies over every variable assignment rather than referring 
to the empty variable assignment.  The reason for the change is that we now want to 
allow that a formula containing free variables may be first-order valid. 
 
We can prove soundness and completeness theorems pretty much as before (although we 
will not bother to actually do that): 
| –   P if and only if | =   P. 
 
It is often maddeningly difficult to prove even the simplest theorems. 
 
Example 1:  For all P, Q,   | –   (¬P → (P → Q)) 
 

1. (¬Q → ¬P) → (P → Q)  (by L3) 
2.  (((¬Q → ¬P) → (P → Q)) → (¬P → ((¬Q → ¬P) → (P → Q)))) (by L1) 
3. (¬P → ((¬Q → ¬P) → (P → Q)))  (by MP from 1, 2) 
4. ((¬P → ((¬Q → ¬P) → (P → Q))) →  
 ((¬P → (¬Q → ¬P)) → (¬P → (P → Q))) (by L2) 
5. ((¬P → (¬Q → ¬P)) → (¬P → (P → Q))) (by MP from 3, 4) 
6. (¬P → (¬Q → ¬P))  (by F1) 
7. (¬P → (P → Q)) (by MP from 5, 6) 
 

For the remaining examples, I will assume, as a theorem, that if P is a tautology,  
then | –   P. 
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Example 2:  If v does not occur in P, then | –    (∀v(P → Q) → (P →∀vQ)) 
 

1. (∀v(P → Q) → (∀vP → ∀vQ)) (by L4) 
2. (P → ∀vP) (by L5) 
3. ((P → ∀vP) →  
 ((∀v(P → Q) → (∀vP → ∀vQ)) → (∀v(P → Q) →(P → ∀vQ)))) 
 (by the above theorem) 
4. ((∀v(P → Q) → (∀vP → ∀vQ)) → (∀v(P → Q) →(P → ∀vQ))))  
 (by MP from 2, 3) 
5. (∀v(P → Q) →(P → ∀vQ))) (by MP from 1, 4) 

 
Example 3: | –   (∀xFx → Fa) 
 

1. x = a → (Fx → Fa) (by L7) 
2. ((x = a → (Fx → Fa)) → (¬Fa → (Fx → ¬x = a)))  (by the theorem) 
3. (¬Fa → (Fx → ¬x = a)))  (by MP 1,2) 
4. ∀x(¬Fa → (Fx → ¬x = a)))  (by Generalization from 3) 
5. (∀x(¬Fa → (Fx → ¬x = a))) → (∀x¬Fa → ∀x(Fx → ¬x = a)))  (by L4) 
6. (∀x¬Fa → ∀x(Fx → ¬x = a)) (by MP 4, 5) 
7. (∀x(Fx → ¬x = a) → (∀xFx → ∀x ¬x = a)) (by L4) 
8. ((∀x¬Fa → ∀x(Fx → ¬x = a)) → ((∀x(Fx → ¬x = a) →  

 (∀xFx → ∀x¬x = a)) → (∀x¬Fa → (∀xFx → ∀x¬x = a)))) (by the theorem)  
9. ((∀x(Fx → ¬x = a) → (∀xFx → ∀x¬x = a)) →  
 (∀x¬Fa → (∀xFx → ∀x¬x = a))) (by MP 6, 8) 
10. (∀x¬Fa → (∀xFx → ∀x¬x = a))  (by MP 7, 9) 
11. ¬Fa → ∀x¬Fa  (by L5) 
12. ((¬Fa → ∀x¬Fa) → ((∀x¬Fa →(∀xFx → ∀x¬x = a)) →  
 (¬Fa → (∀xFx → ∀x¬x = a))))  (by the theorem) 
13. ((∀x¬Fa → (∀xFx → ∀x¬x = a)) → (¬Fa → (∀xFx → ∀x¬x = a)))  
 (by MP 11, 12) 
14. (¬Fa → (∀xFx → ∀x¬x = a)) (by MP 10, 13) 
15. ((¬Fa → (∀xFx → ∀x¬x = a)) → (¬∀x¬x = a → (∀xFx → Fa)))   
 (by the theorem) 
16. (¬∀x¬x = a → (∀xFx → Fa))  (by MP 14, 15) 
17. ¬∀x¬x = a (by L6) 
18. (∀xFx → Fa)  (by MP 16, 17) 
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The language of arithmetic 
 
For purposes of coding formulas with numbers (Gödel numbering), we will want to the 
number of basic symbols in our language to be a prime number.  So we will confine our 
attention to a first-order language containing just the following 13 symbols: 
 

0  ʹ′  (  )  f  ∗  v  ¬  →  ∀  =  ≤  # 
 
Although, offically, the language contains just these symbols, we will use a use a number 
of “abbreviations” to make our meaning clearer: 
 

1 abbreviates 0ʹ′. 
2 abbreviates 0ʹ′ʹ′. 
3 abbreviates 0ʹ′ʹ′ʹ′. 
     

€ 

 
x, y, etc., will abbreviate v∗, v∗∗, etc., on an ad hoc basis. 
     

€ 

 
(x + y) abbreviates f∗(xy), which abbreviates f∗(v∗v∗∗). 
(x • y) abbreviates f∗∗(xy). 

 
0 denotes the number 0 (notice the difference in font), = denotes identity, ≤ denotes the 
relation of being less than or equal to, + denotes addition, and • denotes multiplication. 
 
The symbol ʹ′ (the “prime”) denotes the successor function.  So (0ʹ′ + 0ʹ′ʹ′ʹ′)ʹ′ʹ′ denotes the 
successor of the successor of the sum of the successor of 0 and the successor of the 
successor of the successor of 0, namely, (1 + 3) + 2 = 6. 
 
I will return to the meaning of # later. 
 
For example, the sentence 
 

∀v∗∀v∗∗∀v∗∗∗(0ʹ′ ≤ v∗∗ → f∗∗(v∗v∗∗∗) ≤ f∗∗(f∗(v∗v∗∗) v∗∗∗)) 
 

will be abbreviated as follows: 
 

∀x∀y∀z(1 ≤ y → (x • z) ≤ ((x + y) • z)). 
 
Since we are now using multiple vocabulary items to form a single variable and to form a 
single function symbol, our definition of well-formed formula will have to include extra 
clauses.  We will call the language LA (the “language of arithmetic”). 
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Definition of LA (the language of arithmetic): 
 
f∗ and f∗∗ are the two-place function symbols of LA.   
 
v followed by one or more ∗’s is a variable of LA. 
 
t is a term of LA if and only if either 
(i) t is 0, or 
(ii) v is a variable and t is v, or 
(iii) t0 is a term and t is t0ʹ′ (the term that t0 is followed by a prime), or 
(iv) t0 and t1 are terms, f is a two-place function symbol and t is f(t0, t1). 
 
We will call 0 and the terms consisting of 0 followed by one or more primes numerals. 
 
P is an atomic formula of La if and only if for some terms t0 and t1, P is t0 = t1, or  
P is t0 ≤ t1. 
 
P is a wff of LA if and only if either 
(i) P is an atomic formula, or 
(ii) for some wff Q, P is ¬Q, or 
(iii) for some wffs Q and R, P is (Q → R), or 
(iv) for some wff Q and some variable v, P is ∀vQ. 
 
We will also use ∧, ∨, ↔ and ∃ as abbreviations in the usual way. 
 
Notice that I am using the sans serif Arial font both for the language of arithmetic and for 
metalinguistic variables.  For example, when I wrote “t is 0” in the definition of terms, 
“t” was a metalinguistic variable that I use to talk about the language of arithmetic, and 
“0” was part of the object language, the language of arithmetic that I am talking about.  
You will have to determine from the context which is which. 
 
Also, recently I have been writing “is” rather than “=”, because I did not want you to 
confuse the “=” in the metalanguage, which I use to talk about LA with the “=”, which is 
a predicate of LA.  In the future, I will not hesitate to write “=”.  There is a hard-to-see 
difference in font (Arial for the object language, Times New Roman for the 
metalanguage), but you should also be able to tell from the context which identity symbol 
I am using. 
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The base 13 numbering system 
 
We will count in a base 13 numbering system.  That means that we will have single digit 
that means 10, a single digit that means 11 and one that means 12. 
 
 10 11 12 
 | | | 
 η ε δ 
 (eta) (epsilon) (delta) 
 
Whereas in a base ten number system “10” denotes the number ten, in a base thirteen 
number system “η” denotes the number 10.  In base thirteen, “10” denotes the number 
thirteen.  “11” denotes fourteen (thirteen plus one).  “1η” denotes 23 (thirteen plus ten).  
“δ0” denotes one hundred and fifty-six (twelve times thirteen). “δ2” denotes one hundred 
and fifty-eight (twelve times thirteen plus two). 
 
We will usually be talking about numbers at a high level of abstraction; so it will not be 
necessary for us to learn to mentally calculate in base thirteen.  It will be good enough 
that we understand in principle how to calculate in base thirteen 
 
 
Gödel numbering 
 
We are going to “code up” the language of arithmetic in natural numbers.  An expression 
is just any sequence of symbols in the language of arithmetic — whether it forms a well-
formed formula or not.  With one qualification, we will assign to each expression of the 
language of arithmetic—indeed, to each finite sequence of expressions—a unique natural 
number.  This assignment is called a Gödel numbering.   
 
To each of the basic vocabulary items in the language of arithmetic, we will assign one of 
the first thirteen natural numbers (0 through 12), which we will write in base thirteen.  
Here is the assignment: 
 
 0 ʹ′ ( ) f ∗ v ¬ → ∀ = ≤ # 

 | | | | | | | | | | | | | 
 1 0 2 3 4 5 6 7 8 9 η ε δ 
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To find the Gödel number of any complex expression, just write the numeral for the 
Gödel number of each of the basic vocabulary items in the same order as they occur in 
the expression.  Thus, the Gödel number of  f∗(v) (which is meaningless), in base thirteen, 
is 45263, i.e., writing now in base ten, (4 × 134) + (5 × 133) + (2 × 132) + (6 × 13) + 3.  
The Gödel number of v=v≤ (this is not a typo, just an intentionally meaningless string) in 
base thirteen, is 6η6ε, i.e., in base ten, (6 × 133) + (10 × 132) + (6 × 13) + 11. 
 
Be careful to distinguish between numbers and the numerals that denote them.  In base 
ten, the numeral that denotes the number ten is “10”.  In base thirteen, the numeral that 
denotes the number ten is “η”.  In our language for arithmetic, the numeral that denotes 
the number ten is “ 0ʹ′ʹ′ʹ′ʹ′ʹ′ʹ′ʹ′ʹ′ʹ′ʹ′ ” (that’s the numeral for zero followed by ten primes).  A 
Gödel numbering is an assignment of numbers to expressions, not an assignment of 
numerals to expressions.  But it’s easy to get confused because we care a lot about the 
numerals that we use to denote the numbers (so much so that we switch to base 13).   
 
Each of the numerals in the language of arithmetic itself has a Gödel number.  The Gödel 
number of the numeral “0” is (now I’m writing in base 13) 1.  The Gödel number of the 
numeral “0ʹ′” (notice the prime) is (now writing in base 13) 10, i.e., (now writing in base 
10) 13.  The Gödel number of the numeral “0ʹ′ʹ′” is (writing in base 13) 100, i.e., (writing 
in base 10) 132.  In general, for any numeral consisting of “0” followed by n primes, the 
Gödel number of that numeral can be written, in base 13, with “1” followed by n 
occurrences of “0”. 

 
As I said, we also want to assign to each sequence of expressions a unique number.  
That’s where the symbol “#” comes in.  Instead of representing sequences of formulas in 
the usual way, with commas and corner brackets, thus: 
 

〈(Fa → Gb), Fa, Gb〉 
 

we will represent sequences by writing the expressions in order separated by “#”s, thus: 
 

#(Fa→Gb)#Fa#Gb# 
 

So now, since “#” has a Gödel number, namely, δ, we get a Gödel number for each finite 
sequence of expressions as well.  We will call these expressions too.  (So, looking ahead, 
each proof will have unique Gödel number, since proofs can be defined as a kind of 
sequence of formulas.) 
 
Above I said that “with one exception” we would map every expression into a number.  
The exception is any expression of more than one symbol that begins with a prime: ʹ′ .  
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The code of the prime is 0.  But we cannot say that the code of ʹ′ʹ′ is 00, because that’s just 
0.  Likewise we cannot say that the code of ʹ′ʹ′¬ is 007, because that’s just 7, the code of 
¬.  So we will not assign codes to such expressions.  That’s not a problem since no well-
formed formula begins with a prime. 
 
Notice that because each symbol corresponds to a single digit, every number is the Gödel 
number of some expression.  Leaving aside the symbols of more than one expression that 
begin with a prime, the mapping of expressions to natural numbers is one-one. 
(Systems of Gödel-numbering don’t always have that property.) 



Lesson 6:  Sets of Numbers 
 
Arithmetic Sets 
 
Throughout we will assume that we are dealing with a structure in which each constant of 
the language of arithmetic receives its intended interpretation.  So the number zero is 
assigned to 0, the successor function is assigned to ʹ′, the addition function is assigned to 
+, the multiplication function is assigned to •, and the relation of being less than or equal 
to is assigned to ≤.  The domain of the structure consists of the natural numbers, 0, 1, 2, 
etc.  As usual, variable assignments will assign members of the domain, viz., natural 
numbers, to variables, and we may speak of a variable assignment as satisfying or not 
satisfying a formula.  In speaking of satisfaction, we will not bother to mention the 
structure, because we assume that we are always dealing with the intended interpretation 
that I have just described. 
 
We can use the language of arithmetic and the concept of satisfaction by a variable 
assignment to define sets of numbers.  For example, we can say that the formula 3 ≤ x 
(recall that this is an abbreviation of 0ʹ′ʹ′ʹ′ ≤ v∗) defines a set of numbers, namely, those 
numbers n such that g∅[x/n] satisfies 3 ≤ x.  That would be, of course, the set of natural 
numbers greater than or equal to 3.   
 
But since each natural number has a name in the language of arithmetic, we can get the 
same effect without bringing in satisfaction and variable assignments.  We will use the 
following convention.  If n is a natural number, then   

€ 

n  is the numeral that denotes n in 
the LA, the language of arithmetic.  (I could let the change in font mark the difference, but 
that would not work very well when we write on the blackboard.)  For example, if n is 4, 
then   

€ 

n  is 0ʹ′ʹ′ʹ′ʹ′ (and the Gödel number of   

€ 

n  is, in base 13, 10000).  (I don’t mean that if n 
is 4, then   

€ 

n  and 0ʹ′ʹ′ʹ′ʹ′ denote the same number; I mean that the symbol   

€ 

n  is the following 
symbol: 0ʹ′ʹ′ʹ′ʹ′.) 
 
So we can use the formula 3 ≤ x  to define a set of numbers by using it to define the set A 
as follows:  For all natural numbers n, 
 

3 ≤   

€ 

n  is true if and only if n ∈ A. 
 

According to this definition, of course, A is the set of natural numbers greater than or 
equal to 3.  For another example, we can define the set B as follows: 
 

∃y(1 ≤ y ∧   

€ 

n  = (5 • y)) is true if and only if n ∈ B. 
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This means that B is the set of numbers that are multiples of 5 (5, 10, 15, etc.). 
 
Let F(v) be any formula of LA in which v is the sole free variable.  F(v) is said to express 
a set of natural numbers A if and only if for all natural numbers n: 
 

 F(  

€ 

n ) is true if and only if n ∈ A. 
 

A set of m-tuples is called an m-ary relation.  Let F(v1, …, vm) be a formula of LA in 
which v1, …, vm are the sole free variables, where these are the first m variables in a 
given enumeration of the variables of LA, and in which all of them do occur free.  Then 
F(v1, …, vm) expresses the relation R of m-tuples if and only if: 
 

 F(  

€ 

n 1, …,   

€ 

n m) is true if and only if 〈n1, …, nm〉 ∈ R.   
 
The reason why we require the formula that expresses a set to contain free all of the first 
m variables in an enumeration of the variables is that in that way we can know which 
“place” in an m-tuple corresponds to a given variable.  
 
A set or relation is called arithmetic (pronounced with accent on third syllable) if and 
only if it can be expressed by a formula of LA. 
 
 
Σ0-formulas and sets 
 
Within the class of arithmetic sets we can distinguish some important subsets.  Toward 
defining a special class of arithmetic sets, we first define the concept of a Σ0-formula.  
(This use of “Σ” has nothing to do with my use of it in defining first-order structures.) 
 

An atomic Σ0-formula is an atomic formula of LA having one of the following four 
forms: (c1 + c2) = c3, (c1 • c2) = c3, c1 = c2, or c1 ≤ c2, where each of c1, c2, and c3 is 
either a variable or a numeral. 
 

Examples:  (1 + 2) = 3, (3 + 2) = 1, (1 + x) = 3, 5 = x, 5 ≤ x. 
 

We now define the set of Σ0-formulas by means of the following four statements: 
1.  Every atomic Σ0-formula is a Σ0-formula. 
2. If P and Q are Σ0-formulas, then ¬P and (P → Q) are Σ0-formulas. 
3. If P is a Σ0-formula, v is a variable, and c is a numeral or a variable distinct from 

v, then ∀v(v ≤ c → P) is a Σ0-formula. 
4. Nothing else is a Σ0-formula. 
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Another notational convention:  We will write formulas of the form ∀v(v ≤ c → P) this 
way:  (∀v ≤ c)P.  For example, ∀x(x ≤ 10 → (10 • x) ≤ 1000)) will be written:   
(∀x ≤ 10)((10 • x) ≤ 1000). (∃v ≤ c)P abbreviates ¬(∀v ≤ c)¬P, which is equivalent to 
¬∀v(v ≤ c → ¬P).   
 
The expressions (∀v ≤ c) and (∃v ≤ c) are called bounded quantifiers.  So we can say 
that Σ0-formulas are formulas of LA in which all quantification is bounded.  (So we say 
that quantifiers are bounded (by numbers); whereas we say that variables are bound (by 
quantifiers).) 
 
Notice that atomic Σ0-formulas are defined in terms of variables and numerals, not other 
kinds of terms.  This means that the following is not a Σ0-formula:  (x + (y + z)) = w.  
We can express that same (four-place) relation with a Σ0-formula, but we have to use 
some devious means:  (∃u ≤ w)((y + z) = u ∧ (x + u) = w)).  (The addition of the bound 
on the quantifier does not change the extension, because we can be sure that none of the 
addends is greater than the sum.) 
 
What is special about Σ0-sentences (i.e., with no free variables) is that we can always 
determine whether they are true just by calculation—adding and multiplying—by 
operations for which there is a definite mechanical procedure.  Since all quantification is 
bounded, we never have to do more than finitely many such calculations in order to 
determine whether a Σ0-sentence is true.  (Note, though, that, however little time each 
step takes, some finite calculations will take longer than the age of the earth to complete.) 
 
Suppose that A is a set of natural numbers or a relation on the natural numbers 
expressible by some Σ0-formula.  Then A is a Σ0 set or relation.   
 
Let A be a Σ0 set.  Then A is decidable in the following sense:  Given any natural number 
n, there is an algorithm that definitely tells us after finitely many steps either that n does 
belong to A or that n does not belong to A.  Proof:  Let F(v) be the Σ0-formula with one 
free variable, v, that expresses A.  To decide whether n belongs to A, all we have to do is 
calculate whether the sentence F(  

€ 

n ) is true.  If so, then n belongs; otherwise not.  
Similarly, if F(v1, …, vm) is a Σ0-formula in which exactly v1, …, vm are free, the Σ0-
relation that it expresses is decidable (in the sense that we can decide whether any given 
n-tuple is a member). 
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Σ1-formulas and sets 
 
Next, we define the Σ1 formulas, sets and relations.  A Σ1-formula is a formula of the 
form, ∃vm+1F(v1, …, vm, vm+1), where F(v1, …, vm, vm+1) is a Σ0-formula with m+1 free 
variables.  So a Σ1-formula begins with one unbounded existential quantifier, and all of 
the rest of the quantifiers in it are bounded quantifiers. A set or relation is a Σ1 set or 
relation if and only if it is expressible by a Σ1-formula. 
 
We can define the sets and relations that are recursively enumerable (r.e.) to be the Σ1 
sets and relations.  Here is why that is a reasonable definition.  (For the moment, I 
confine my attention to sets, excluding relations.)  Suppose A is a Σ1 set.  Then there is a 
Σ0-formula F(v, w) such that ∃wF(v, w) expresses A.  Now consider the following table: 
 
 v 0 1 2 3 4 … 

w        

0  -  - -  … 

1  -  - - - … 

2   - - -  … 

3  - -  - - … 

  

€ 

    

€ 

   

€ 

   

€ 

   

€ 

   

€ 

  
 
Let us suppose that the check marks indicate the pairs of numbers that satisfy the formula 
F(v, w).  Since F(v, w) is Σ0, we can simply calculate whether any given pair of numbers 
satisfies F(v, w) (i.e., for any pair of numbers n and m, we can calculate whether F(  

€ 

n ,  

€ 

m ) 
is true).  So by zig-zagging through this table, we can produce a list of all the numbers 
that satisfy ∃wF(v, w) (i.e., of all of the numbers n such that ∃wF(  

€ 

n , w) is true).  (From 
the table, we can tell that 0, 1, 2 and 4 do, but we can’t tell yet about 3.) 
 
Similarly, for Σ1 relations.  For example, let R be a set of ordered pairs; so R is a two-
place relation.  Let ∃wF(u, v, w) be the Σ1-formula that expresses it (so that F(u, v, w) is 
a Σ0-formula).  Consider the following table: 
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 〈u, v〉 〈0, 0〉 〈1, 0〉 〈0, 1〉 〈2, 0〉 … 

w       

0  -  -  … 

1  -  - - … 

2   - -  … 

3  - - - - … 

  

€ 

    

€ 

   

€ 

   

€ 

   

€ 

  
 
Across the top we have a list of all pairs of natural numbers (which we could produce by 
a separate zig-zag operation).  The check marks indicate triples that satisfy the Σ0 fromula 
F(u, v, w). By zig-zagging across this table we could produce a list of all pairs of 
numbers that satisfy the formula ∃wF(u, v, w).  (〈0, 0〉, 〈1, 0〉, and 〈2, 0〉 do; we can’t tell 
yet about 〈0, 1〉.) 
 
So if a set or relation is recursively enumerable in the sense defined, then we have a 
mechanical method, i.e., algorithm, for producing a potentially infinite list such that 
every member of the set is certain to eventually show up on the list.  Notice, though, that 
a set might be recursively enumerable in this sense and still not be decidable.  That is, we 
may not have a mechanical method which, given any number (or n-tuple of numbers), 
tells us whether or not it is a member of the set.  Suppose that A is recursively 
enumerable and n is not in A.  Well, we can start using our method of generating a list of 
the members of A.  But there may never come a point at which we can be sure that we 
have gone on long enough and can conclude that n is not going to show up in the list.  In 
terms of the table, there might be a column containing no check at all; but nothing tells us 
that if we continue zig-zagging through the table we will not eventually come upon a 
check in that column. 
 
Where A is a set (of natural numbers), the complement of A, written   

€ 

˜ A , is the set of 
natural numbers that do not belong to A.  If R is a relation, i.e., a set of n-tuples, then the 
complement of R, written   

€ 

˜ R , is the set of n-tuples that are not members of R.   
 
The sets that are recursive (also called recursively decidable) can be defined as those sets 
or relations R such that both R and   

€ 

˜ R  are recursively enumerable.  Here is why that is a 
reasonable definition:  Suppose both R and   

€ 

˜ R  are recursively enumerable.  In that case, 
we do have a method for deciding whether any given object n is a member of R:  
Alternate between listing members of R and listing members of   

€ 

˜ R .  Eventually n will 
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show up on one list or the other.  If it shows up on the enumeration of R, then it is a 
member of R.  If it shows up on the enumeration of   

€ 

˜ R , then it does not belong to R. 
 
You might find it salutary to contemplate the following fact.  Suppose that S(x, y) is a 
Σ0-formula.  Then the relation it expresses is recursive.  But the set of numbers expressed 
by ∃yS(x, y) may be only recursively enumerable. 
 
I said above that Σ0 sets are “decidable”.  (I will say more about that notion of 
decidability in the next section.)  Now I can say that Σ0 sets are recursive (recursively 
decidable) in the sense just defined.  Suppose a set A is Σ0.  Then there is a Σ0-formula 
F(v) that expresses it.  But the complement of A,   

€ 

˜ A , is expressed by ¬F(v), which will be 
Σ0 too.  But every Σ0-formula is Σ1.  (Where F is any Σ0-formula and u a variable that 
does not occur free in F, ∃uF is a Σ1-formula.)  So both A and   

€ 

˜ A  are expressibly by Σ1-
formulas.  So A is recursive. 
 
While we are defining concepts of recursiveness, I should add (since we need to know 
this later):  A function fun is a recursive function if and only if the relation fun(x1, x2, …, 
xn) = xn+1 is a recursive relation. 
 
 
Church’s thesis 
 
The concepts of recursively enumerability and recursiveness (recursive decidability), 
which I have just defined in a precise way, are the formal, i.e., precise, counterparts to the 
informal concepts of effective enumerability and decidability.  (There is quite a lot of 
variability in terminology in the literature; so watch out.) 
 
To say that a set is effectively enumerable, in the informal sense, is to say that there is 
some kind of step-by-step, mechanical, brainless, stupid procedure for generating a list of 
the members such that every member will eventually show up on the list.  This is 
informal because I have not given a definition of “stupid”.  To say that a set is decidable 
is to say that there is some kind of step-by-step, mechanical, brainless, stupid procedure 
for deciding whether or not any given object is a member of the set. 
 
What is known as Church’s thesis (after the logician Alonzo Church) equates the 
informal with the formal notion:  
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Church’s thesis (two parts):  
(1)  A set of natural numbers or relation on the natural numbers is effectively enumerable 

if and only if it is expressible by a Σ1-formula (and hence recursively enumerable in 
the sense I defined).   

(2) A set of natural numbers or relation on the natural numbers is decidable if and only 
both it and its complement are expressible by a Σ1-formula (and hence recursive in 
the sense I defined). 

 
The definition of recursive enumerability in terms of Σ1 sets is just one of several 
possible formally precise definitions.  The reason that Church’s thesis seems reasonable 
to people is that all of the known alternative precise definiations are demonstrably 
equivalent to one another.  Another very important one uses the concept of a Turing 
machine.  I will not say anything more about that in this course, but anyone who wants to 
claim an understanding of contemporary mathematical logic needs to know about Turing 
machines.  So I highly recommend that you read the first three or four chapters of Boolos 
and Jeffrey on this subject. 
 
I have formulated Church’s thesis as only a statement about sets of and relations on the 
natural numbers.  It can be extended to other sorts of objects in so far as we have an 
algorithm for pairing numbers with those other sorts of objects.  So, for example, it is 
evident that given any expression in the language of arithmetic, we can mechanically find 
its Gödel number and that given any number we can mechanically determine which 
expression it is the Gödel number of.   
 
So we could extend Church’s thesis to include the following:  A set of expressions is 
effectively enumerable if and only if the set of Gödel numbers of the expressions in the 
set is expressible by a Σ1-formula (recursively enumerable).  And a set of expressions is 
decidable if and only if both the set of Gödel numbers of the expressions in the set and 
the set of Gödel numbers of expressions in the complement of the set are expressible by 
Σ1-formulas (i.e., the set of Gödel numbers of expressions in the set is recursive).  
 
Assuming Church’s thesis, then, we will pretty much equate the decidability of a set of 
expressions with the recursiveness of a set of numbers.  For example, eventually we will 
see that first-order logic is undecidable.  That is, we will claim that there is no algorithm 
by which we can decide whether or not a given formula of first-order logic is valid.  But 
what we will actually prove is that the set consisting of the Gödel numbers of valid 
sentences of first-order logic is not recursive (i.e., it is not the case that both that set and 
its complement are expressible by a Σ1-formula).   
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Σ-formulas and sets 
 
One more concept that we will need is that of a Σ-formula and a Σ set or relation (no 
subscript).  We define the Σ-formulas by means of the following six statements: 
 

1.  Every Σ0-formula is a Σ-formula. 
2. If P is a Σ-formula and v a variable, then ∃vP is a Σ-formula. 
3. If P is a Σ-formula and   

€ 

n  is a numeral and v and w are distinct variables, then all 
of the following are Σ-formulas:  (∀v ≤   

€ 

n )P, (∃v ≤   

€ 

n )P, (∀v ≤ w)P, (∃v ≤ w)P. 
4. If P and Q are Σ-formulas, then (P ∨ Q) and (P ∧ Q) are Σ-formulas.  

(Remember that we still use ∨ and ∧ as abbreviations.) 
5. If P is a Σ0-formula (yes, the subscript is correct) and Q is a Σ-formula, then 

(P → Q) is a Σ-formula. 
6. Nothing else is a Σ-formula. 
 

A Σ set or relation is a set or relation expressible by a Σ-formula.   
 
The significance of this concept to us is as follows:  Because of the connection to the 
concept of recursive enumerability, we will often want to know that a certain set is Σ1.  
But what we will directly show is only that it is Σ.  That will suffice to enable us to 
conclude that it is Σ1 because of the following fact:  A set or relation is Σ if and only if it 
is Σ1.  For the proof of this fact (the Σ sets and relations are the Σ1 sets and relations), see 
Smullyan, pp. 50-53.  It’s not difficult, just complicated. 
 
For purposes of understanding the proof in Smullyan, you need the following further 
definition:  Let v1, v2, v3, … be abbreviations for v∗, v∗∗, v∗∗∗, …, respectively.  A 
formula P is said to be regular if and only if for some n ≥ 1, the free variables in P are all 
of v1, v2, … vn.  It might have been helpful for Smullyan to point out that if P is a Σ-
formula that is not regular, then, where n is the largest number such that vn occurs free in 
P, then we can produce a regular Σ-formula by writing:  (v1 = v1 → (v2 = v2 → … →  
(vn-1 = vn-1 → P)…).  Bear that in mind when reading the last paragraph of Smullyan’s 
proof. 
 
Although I didn’t emphasize the fact when I introduced the concept, I have been 
assuming that the formulas that express sets are all regular in this sense.  Thus, in the case 
of a formula containing v∗ and v∗∗ free, we know that the formula expresses a set of pairs 
〈n, m〉 such that the formula is true when we put   

€ 

n  in place of v∗ and   

€ 

m  in place of v∗∗.  
But a formula containing just v∗ and v∗∗∗ free, and not v∗∗, does not “express” anything. 
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Another thing you need to know in order to read Smullyan is that where I say 〈x1, x2, …, 
xn〉 ∈ R, Smullyan writes R(x1, x2, …, xn). 
 
 
Other sets of numbers 
 
The Σ1 sets are one kind of arithmetic set.  Other kinds of arithmetic sets can be defined 
according to the complexity of the formulas of arithmetic that expresses them.   
 
If a set of numbers is recursive, then it is very “orderly”.  There is an algorithm for 
deciding whether or not any number belongs to it.  If a set is recursively enumerable, 
though not recursive, then it is still somewhat orderly.  There may be no algorithm for 
deciding whether or not a given member belongs, but at least there is an algorithm for 
generating a list of all of the members (such that every member eventually shows up on 
the list).   
 
Suppose, though, that A is not recursively enumerable but that S(x,y,z) is Σ0 and the 
formula ∀y∃zS(x,y,z) expresses A.  Then A still has a kind of orderliness one step short 
of recursive enumerability.  For each number n the set expressed by ∃zS(x,  

€ 

n , z) is 
recursively enumerable.  Such a set is called a Π2 set.   Suppose that B is not Π2, but 
T(x,y,z,w) is Σ0 and the formula ∃y∀z∃wT(x,y,z,w) expresses B.  Such as set is called 
Σ3.  We can define a whole hierarchy of sets according to the kinds of formulas of 
arithmetic that express them.  In the table below, assume that each of the formulas S, Sʹ′, 
Sʹ′ʹ′, etc., and R, Rʹ′, Rʹ′ʹ′, etc., is Σ0. 
 

 Σi Πi 

i = 0 S(x) R(x) 

i = 1 ∃ySʹ′(x, y) ∀yRʹ′(x, y) 

i = 2 ∃y∀zSʹ′ʹ′(x, y, z) ∀y∃zRʹ′ʹ′(x, y, z) 

i = 3 ∃y∀z∃wSʹ′ʹ′ʹ′(x, y, z, w) ∀y∃z∀wRʹ′ʹ′ʹ′(x, y, z, w) 

    

€ 

       

€ 

         

€ 

 

 
The technical term for what I have here called “orderliness” is “complexity”.  For each i 
and j, if j > i, then Σj (Πj) sets are said to be “more complex” than the Σi (Πi) sets.  A 
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whole branch of mathematical logic is devoted to the study of complexity.  It is called 
recursion theory. 
 
It is not obvious, but as a matter of fact, every arithmetic set can be expressed by a 
formula that belongs somewhere in this table.  So every arithmetic set is one of these 
kinds.  In the next lesson, we will see that the set of (codes of) truths of arithmetic is not 
arithmetic at all.  In other words, the set of (codes of ) truths of arithmetic is not of any of 
these kinds.  It is as “disorderly” as could possibly be. 
 
 



Lesson 7:  Diagonalization 
 
From now on, instead of speaking of the “Gödel number” of an expression in the 
language of arithmetic, I will usually speak of the “codes” of expressions in the language 
of arithmetic.  (When stating major results, I will lapse back to “Gödel number”.) 
 
Consider the set consisting of all true formulas that can be written in the language of 
arithmetic, LA.  Call that set N.  N is the set of all “truths of arithmetic”.  To each 
member of N there is a corresponding code (Gödel number).  
 
In this lesson, we will prove that the set of codes of formulas in N is not arithmetic.  In 
other words, there is no formula in the language of arithmetic that expresses it.  This 
result is a significant fact in its own right.  If the formulas in N were effectively 
enumerable, then, by Church’s thesis, the set of codes of formulas in N would be 
recursively enumerable, which would mean that it was Σ1.  But the set of codes of 
formulas in N is not expressible by a Σ1-formula.  So N is not effectively enumerable, 
let alone decidable.  There is no algorithm by which one can decide whether a sentence in 
the language of arithmetic is true, and there is no algorithm by which one can list, one 
after the other, all truths of arithmetic. 
 
We can go further.  The set of codes of truths of arithmetic is as disorderly as a set of 
positive integers can possible get.  The set of codes of members of N is not expressible 
by any formula of the language of arithmetic at all! As I explained at the end of the last 
section, arithmetic sets can be placed in a hierarchy of orderliness or complexity. What 
we will show is that the set of codes of truths of arithmetic does not belong to any of 
these kinds. It is not arithmetic.  This is called Tarski’s undefinability theorem. 
 
Once we have reached that conclusion, you might already be able to sniff Gödel’s first 
incompleteness theorem just around the corner:  The set of codes of formulas that are 
provable in some theory of arithmetic, we will find, is not so disorderly.  In fact, it is Σ1 
(recursively enumerable, very orderly).  So there must be some discrepancy between the 
set of codes of provable formulas of arithmetic and the set of codes of truths of 
arithmetic. 
 
 
Concatenation to base 13 is Arithmetic. 
 
Suppose we take a string of symbols, such as v0 (in this case a nonsense string), and 
append to it another string of symbols, such as f≤¬.  The result is a longer string of 
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symbols: v0f≤¬.  This operation is called concatenation.  One might expect that there is a 
definite mathematical relation between the codes for two expressions and the code for the 
concatenation of those expressions.  Indeed there is, and it is arithmetic.  Indeed, it is Σ0.    
We want to prove that fact by actually expressing that relation with a Σ0-formula.   
 
The code of v0 = 61 (in base 13, remember) = (6 × 13) + 1 (in base 10). 
The code of f≤¬ = 4ε7 (in base 13) = (4 × 132) + (11 × 13) + 7 (in base 10 scientific 
notation). 
The code of v0f≤¬ = 614ε7 (in base 13)  
= (6 × 134) + (1 × 133) + (4 × 132) + (11 × 13) + 7 (in base 10)  
= ((6 × 13) + 1) × 133)  + (4 × 132) + (11 × 13) + 7 (in base 10)  
= (61 × 103) + 4ε7 (in base 13 scientific notation).   
(Remember that “10” in base 13 denotes what “13” in base 10 denotes.) 
 
Similarly, the code of v0ʹ′ʹ′ = 6100 (in base 13) = (6 × 133) + (1 × 132) + (0 × 13) + 0 (in 
base 10) = (6 × 133) + 132. 
The code of = = η (in base 13) = 10 (in base 10). 
The code of v0ʹ′ʹ′= = 6100η (in base 13)  
= (6 × 134) + (1 × 133) + (0 × 132) + (0 × 13) + 10 (in base 10)  
= ((6 × 133) + 132) × 13) + 10 (in base 10)  
= (6100 × 10) + η (in base 13). 
 
Examining the above two examples, we detect a pattern: 
 
Suppose that n is written as m digits in base 13.  In other words, the number of digits in 
the base 13 numeral denoting n is m.  For example, 4ε7 is written as 3 digits in base 13.  
We say that m is the length of n.  So the length of 4ε7 is 3.  In general, let l(n) be the 
length of n written in base 13—the number of digits in the base 13 numeral denoting n. 
 
In general, we can see that if m is the code of an expression e1 and n is the code of 
another expression e2, then the code for the result of concatenating e1 with e2 (e1 written 
first) is (m × 10l(n)) + n (writing in base 13). We call this relation concatenation to base 
13. (Notice that while concatenation is a relation between expressions, concatentation to 
base 13 is a relation between numbers). 
 
Let us abbreviate (m × 10l(n)) + n thus:  m ∗ n.   
(Don’t confuse this star with the vocabulary item of LA.) 
 
 
Proposition 1:  The relation expressed by x ∗ y = z is arithmetic; indeed it is Σ0.   
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Proof:   
 
Let x < y abbreviate x ≤ y ∧ x ≠ y (which is already an abbreviation).  Let us use base 
13 to abbreviate numerals of LA.  For example, η  abbreviates 0ʹ′ʹ′ʹ′ʹ′ʹ′ʹ′ʹ′ʹ′ʹ′ʹ′ (that’s ten 
primes), and 10 abbreviates 0ʹ′ʹ′ʹ′ʹ′ʹ′ʹ′ʹ′ʹ′ʹ′ʹ′ʹ′ʹ′ʹ′ (that’s thirteen primes). 
 
Notice that for any positive number n, l(n), the length of the base 13 numeral 
denoting n is simply the smallest number k such that (writing in base 13) 10k is 
greater than n.  For example, the length of “4ε7” is 3, and (writing in base 13) 103 is 
the smallest power of 10 greater than 4ε7.  So 10l(y) = x if and only if x is the smallest 
power of 10 greater than y and 1.   
 
1.  Consider the relation:  x divides y (i.e., y divided by x is a whole number).  That 

relation is expressed by:  (∃z ≤ y)((x • z) = y).  Abbreviate that as x div y. 
 
2.   Consider the set of numbers x such that for some y, x = 13y

 (writing in base 10, the 
set of powers of 13).  That set is expressed by the following formula.  (This only 
works because 13 is a prime number.) 
 (∀z ≤ x)((z div x ∧ z ≠ 1) → 10 div z) 

 Abbreviate that formula as Pow(x). 
 
3.   Consider the relation whose members are pairs 〈x, y〉 such that x is the smallest 

power of 13 greater than y and 1 (writing in base 10).  That relation is arithmetic; 
it is expressed by: 

     (Pow(x) ∧ y < x ∧ 1 < x) ∧ (∀z < x)((Pow(z) ∧ 1 < z) → z ≤ y)) 
 Abbreviate that formula as Small(x, y). 
 
4. Consider the relation whose members are pairs 〈x, y〉 such that 10l(y) = x (writing 

in base 13).  By what I pointed out above, that relation is arithmetic; it is 
expressed by: 

     (y = 0 ∧ x = 10) ∨ (y ≠ 0 ∧ Small(x, y)) 
 Abbreviate this as 10l(y) = x. 
 
5. Finally, the set of triples 〈x, y, z〉 such that (x × 10l(y)) + y = z, i.e., x ∗ y = z, is 

arithmetic; it is expressed by: 
      (∃u ≤ z)(∃v ≤ z)(10l(y) = u ∧ (x • u) = v ∧ (v + y) = z). 
 Abbreviate this as Concat2(x, y, z). 

 
End of proof 
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Let (x ∗ y ∗ z) abbreviate ((x ∗ y) ∗ z). 
 
Corollary:  For each n ≥ 2, the relation (x1 ∗ x2 ∗ … ∗ xn) = y is arithmetic, indeed Σ0.  
  

Proof: By induction.   
Basis: We have proved this for n = 2.   
Let Concat2(x1, x2, y) be an abbeviation of the formula that expresses (x1 ∗ x2) = y.   
Induction hypothesis: The thesis holds for n = m.   
Induction step: Show that the thesis holds for n = m + 1.  Let Concatm(x1, …, xm, y) 
be an abbeviation of the formula that expresses (x1 ∗ x2 ∗ … ∗ xm) = y.  Show that the 
following formula expresses (x1 ∗ x2 ∗ … xm ∗ xm+1) = y.   
The requisite formula is as follows: 

 
(∃z ≤ y)(Concatm(x1, …, xm, z) ∧ Concat2(z, xm+1, y)) 
 

Note:  We have proved not only that (x1 ∗ x2 ∗ … ∗ xn) = y is arithmetic, but also that it is 
Σ0 (recursive), because the only quantifiers used were bounded quantifiers (but the bound 
may be a variable).   
 
 
Some Additional Arithmetization Results 
 
This section continues the work of the previous section in demonstrating that a number of 
important relations are arithmetic, indeed Σ0.  These results will not seem very 
interesting, but they will be used at several junctures in what follows.   
 
6. Begins.  We want a formula that expresses the relation that holds between numbers x 

and y if and only if x is the code for an expression that is the initial segment of the 
expression that y is the code for.  For example, since ∀v∗0 is an initial segment of 
∀v∗0≤v* and 9651 is the code of ∀v∗0 and 9651ε65 is the code of ∀v∗0≤v*, 9651 
stands in this relation to9651ε65. We call this the Begins relation.  We have already 
defined Pow(x) and Concat2(x1, x2, y) as abbreviations of Σ0 formulas of arithmetic.  
Consequently, the following formula expresses the Begins relation: 

 
  (x = y ∨ (x ≠ 0 ∧ (∃z ≤ y)(∃w ≤ y)(∃u ≤ y)(Pow(w) ∧ (x • w) = u ∧  
  Concat2(u, z, y))) 
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 For example, 5 begins 5007 because there is a power of 13, namely 100 (which is 132 
written in base 13), such that 5007 = (5 • 100) ∗ 7.  (Think of 5 as x, 100 as w, 500 as 
u, 7 as z and 5007 as y.)  Abbreviate this formula thus:  xBy 

 
7. Ends.  Similarly, we want a formula that expresses the relation between x and y when 

the numeral for x is a final segment of the numeral for y.  That formula is: 
 
  (x = y ∨ (∃z ≤ y)(Concat2(z, x, y))) 
 
 Abbreviate this formula thus:  xEy 
 
8. Part of.  This expresses the relation between x and y when the numeral for x ends 

some numeral that begins the numeral for y.  For example, ε2 is part of 5ε294, since 
ε2 ends 5ε2 which begins 5ε294.  This relation expressed by: 

 
  (∃z ≤ y)(xEz ∧ zBy) 
 
 Abbreviate this:  xPy 
 
From now on I will simply write xy = z as an abbreviation for Concat2(x, y, z) (which, 
recall, abbreviates the formula that expresses the relation that holds between three 
numbers x, y and z if and only if x ∗ y = z), and xwy = z as an abbreviation of Concat3(x, 
w, y, z). 
 
Also, I will let x1x2…xnPy abbreviate (∃z ≤ y)(Concatn(x1, x2, …, xn, z) ∧ zPy). 
 
 
Exponentiation is Σ1 
 
The relation xy = z is arithmetic.  Indeed, it is Σ1. What matters for Lesson 8 will be only 
that exponentiation is arithmetic.  But in Lesson 10, we will want to know that it is Σ1 as 
well. 
 
Toward showing that the relation xy = z is arithmetic we first need to make an observation 
about it that will give us the hint we need in order to write the formula that expresses it. 
 
Proposition:  xy = z if and only if there exists a set S of ordered pairs such that: 
(i)  〈y, z〉 ∈ S, 
(ii)  For every pair 〈a, b〉 ∈ S, either 〈a, b〉 =  〈0, 1〉 or there is some pair 〈c, d〉 ∈ S such 
that 〈a, b〉 = 〈c + 1, d • x〉. 
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Proof: 
 
Left-to-Right:  If xy = z, then we can take S to be the set {〈0,1〉, 〈1, x〉, 〈2, x2〉, . . . , 〈y, xy〉}.  
If we do that, then (i) obviously, 〈y, z〉 = 〈y, xy〉 ∈ S, and (ii) for pair 〈a, b〉 ∈ S, either 〈a, 
b〉 = 〈0, 1〉 or there is some pair 〈c, d〉 ∈ S such that 〈a, b〉 = 〈c + 1, d • x〉.   (For example, 
〈2, x2〉  is not 〈0, 1〉, but 〈1, x〉 ∈ S and 〈2, x2〉 = 〈1 + 1, x • x〉. 
 
Right-to-Left:  Let S be any set of ordered pairs satisfying (i) and (ii).  
 
We prove, by induction on a that for all positive integers a, if there is an integer b such 
that 〈a, b〉 ∈ S, then xa = b.  Basis:  a = 0.  If  〈a, b〉 ∈ S  and b = 1, then  x0 = 1.  If 〈a, b〉 = 
〈0, b〉 ∈ S,  then it cannot happen that b ≠ 1, because there is no c such that c + 1 = 0.   
Induction hypothesis:  Suppose for arbitrary c, if there is an integer d such that 〈c, d〉 ∈ S, 
then xc = d.  Induction step:  Show that if there is a b such that 〈c +1, b〉 ∈ S, then xc + 1 = 
b.  By the definition of S, if 〈c +1, b〉 ∈ S, then there is a d such that 〈c, d〉 ∈ S and 〈c +1, 
b〉 = 〈c + 1, d • x〉.  By IH, xc = d.  So xc + 1 = d • x = b. 
So, given that by (1), (y, z) ∈ S, it follows that xy = z. 
 
End of proof 
 
Now suppose we can find a Σ0-formula K(y, z, w) that has the following property:  For 
any finite sequence of ordered pairs of numbers P = 〈〈a1, b1〉, 〈a2, b2〉, . . . , 〈an, bn〉〉, there 
are numbers y and z such that y ≤ w, z ≤ w and 〈y, z〉 ∈ P if and only if 〈y, z, w〉 satisfies 
K(y, z, w).   
 
If we can find such a formula K(y, z, w), then for each x and each w, we can think of the 
set of ordered pairs 〈y, z〉 such that 〈y, z, w〉 satisfies K(y, z, w) as the set S in the above 
proposition.  Accordingly, the following Σ-formula expresses the relation xy = z: 
 
∃w(K(y, z, w) ∧ (∀a ≤ w)(∀b ≤ w)(K(a, b, w) →  
((a = 0 ∧ b =1) ∨ (∃c ≤ a)(∃d ≤ b)(K(c, d, w) ∧ a = c + 1 ∧ b = d • x)))) 
 
Let the formula z = (x Exp y) abbreviate this formula. 
 
(Quiz:  Why does K(y, z, w) have to be Σ0?)  So it remains to find the formula K(y, z, w) 
that does the job.  Here we’re going to use some tricks.  The following formula defines 
the set of codes of terms that are expressed in base 13 notation as strings of 1’s: 
 

x ≠ 0 ∧ (∀y ≤ x)(yPx → 1Py) 



Lesson 7:  Diagonalization 12/31/13  4:20 PM Page 97 

 

 
(We stipulate that x is not 0, because as we have defined the formula P, nothing is part of 
0.)  Abbreviate this formula thus:  Ones(x). 
 
Where z is (a numeral for a number expressed in base 13 notation as) a string of 1’s, say 
that the number denoted by 2z2 is a frame.  Say that x is a maximal frame of y if and only 
if x is a frame, the numeral denoting x is a part of the numeral denoting y, and x is as long 
as any frame that is a part of y.  For example, the number denoted by 21112 is a maximal 
frame of the number denoted by 5ε032111292δ2112. The following Σ0-formula 
expresses the relation of being a maximal frame: 
 

xPy ∧ (∃z ≤ y)(Ones(z) ∧ x = 2z2 ∧ ¬(∃w ≤ y)(Ones(w) ∧ 2zw2Py)) 
 

Abbreviate this as xMFy. 
 
The desired formula K(y, z, w) can be written as follows: 
 

(∃u ≤ w)(uMFw ∧ uuyuzuuPw ∧ ¬uPy ∧ ¬uPz) 
 

This does the job, because we can think of w as denoting a sequence of pairs (by analogy, 
not by Gödel-numbering); we can think of uu as separating members of the sequence; we 
can we think of a single u as separating the members of the pairs that are members of the 
sequence.  Since u denotes a maximal frame of the number that w denotes, and the 
number that u denotes is not a part of either the number that y denotes or the number that 
z denotes, we can be sure that all of the pairs in the sequence that we are thinking of w as 
denoting are included in this way.  In other words, on analogy to the proof of Proposition 
above, we could prove that   

€ 

z  = (  

€ 

x  Exp   

€ 

y ) if and only if xy = z. 
 
 
Diagonalization is Arithmetic 
 
For any expression, we will define an expression that we will call the diagonal of that 
expression.  Likewise, we will define a relation on numbers x and y that holds just in case 
x is the code of an expression and y is the code of the diagonal of that expression.  
Finally, we will show that that relation is arithmetic.   
 
Let E be an expression (maybe a formula, maybe not).  Where v is a particular variable of 
the language (let’s say v∗), and n is any number, ∀v(v =   

€ 

n  → E) is, of course, another 
expression (which is a formula if and only if E is a formula).  
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For any expression E, let #(E) be the code of that expression. 
 
Define a two-place function rep as follows:  Where e is the code of E, rep(e, n) is the 
code of ∀v(v =   

€ 

n  → E).  Call this the representation function.  
For example, E might be the expression 2 ≤ v. Then, since 0ʹ′ʹ′ʹ′ is the numeral that 
denotes the number 3, rep(#(2 ≤ v), 3) = #(∀v(v = 0ʹ′ʹ′ʹ′ → 2 ≤ v)). 
 
Define a one-place function diag as follows:  For all numbers x, diag(x) = rep(x, x).   

The numeral that denotes #(2 ≤ v) is     

€ 

#(2≤v)
__________

.   

So, for example, diag(#(2 ≤ v)) = rep(#(2 ≤ v), #(2 ≤ v)) = #(∀v(v =     

€ 

#(2≤v)
__________

 → 2 ≤ v)). 
 
So, in words, diag(x) is the code for the formula that results from taking the expression E 
for which x is the code, and putting the numeral for that code in place of   

€ 

n  in 
∀v(v =   

€ 

n  → E).  Where   

€ 

n  is the numeral that denotes the code for E, ∀v(v =   

€ 

n  → E) is 

the diagonal for E.  In other words, the diagonal for E is ∀v(v =   

€ 

#E
_____

 → E), and 
diag(#(E)) is the code for that formula.  Be sure to distinguish between the diagonal for 
E, which is an expression (a formula if E is a formula), and diag(#(E)), which is a 
number. 
 
Suppose we confine our attention to the case in which E is a formula containing v as it 
sole free variable.  Suppose also that we interpret ∀v(v =   

€ 

n  → E) as saying, “the code 
for n satisfies E”.  The the diagonal of E is a sentence is a sentence that says, “my code 
satisfies me”.  If we furthermore ignore the distinction between codes and the expressions 
they are codes for, then the diagonal of E in effect says, “I satisfy myself.” 
 
To understand why diag is called the diagonal function, contemplate the following table, 
representing the inputs to rep.  rep becomes diag when its inputs are restricted to those on 
the diagonal of this table: 
    

 y 1 2 3 … 

x      

1  〈1, 1〉 〈1, 2〉 〈1, 3〉 … 

2  〈2, 1〉 〈2, 2〉 〈2, 3〉 … 

3  〈3, 1〉 〈3, 2〉 〈3, 3〉 … 

  

€ 

    

€ 

   

€ 

   

€ 
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Proposition 2:  The function rep is arithmetic. 
 

Proof:  Observe that each of the components of ∀v(v =   

€ 

n  → E) has a definite code:  
The code of ∀v(v = is 965265η (written in base 13), the code of   

€ 

n  is 10n (remember 
that point from Lesson 6), the code of → is 8, the code of E is e, and the code of ) is 
3.  So the code of ∀v(v =   

€ 

n  → E) is (965265η ∗ 10n ∗ 8 ∗ e ∗ 3).  
 

So the relation rep(e, n) = y is expressed by the following Σ formula: 
 

∃w(w = (10 Exp n) ∧ Concat5(965265η, w, 8, e, 3, y)). 
 
Proposition 3:  The function diag is arithmetic. 
 

Proof:  The relation diag(x) = y is expressed by the following Σ formula: 
 

∃w(w = (10 Exp x) ∧ Concat5(965265η, w, 8, x, 3, y)). 
 

Let Diag(x, y) abbreviate the formula that expresses the relation diag(x) = y. 
 
Note for later purposes: Since z = (x Exp y) is Σ, we can be sure that Diag(x, y) is Σ and 
therefore that the diag relation is Σ1 (recursively enumerable). 
 
Definition:  For any set of numbers A, let A* be the set of all n such that diag(n) ∈ A.   
(So if we find the diagonal of a code in A, then we put the code that it is the diagonal of 
in A*.  Again ignoring the distinction between codes and formulas, if there is a formula in 
A that says, “I satisfy myself!”, then we put the (code for the) expression that is thus said 
to satisfy itself in A*.) 
 
Lemma 1:  If A is arithmetic, then A* is arithmetic. 
 

Proof:  Let A(y) be the formula that expresses A.  Then the following formula 
expresses A*: 

 
∃y(Diag(x, y) ∧ A(y)). 

 
Definition of Gödel sentences:  Where A is a set of numbers, G is a Gödel sentence for A 
if and only if:  G is true if and only if the code for (i.e., the Gödel number of) G is in A.   
 
For short:  G is true ⇔ #(G) ∈ A. 
 



Lesson 7:  Diagonalization 12/31/13  4:20 PM Page 100 

 

The Gödel Diagonal Lemma (lower):  If A is arithmetic, then there is a Gödel sentence 
for A.  (This is not the Gödel incompleteness theorem; we’re still some distance from 
that.  But this is itself one of the great facts of 20th century mathematical logic.) 
 

Proof:  Suppose A is arithmetic.  By Lemma 1, A* is arithmetic.  Let H(v) be the 
formula that expresses A*.  Let h be the code of H(v), and   

€ 

h  the numeral denoting h.  
Then: 
 

∀v(v =   

€ 

h  → H(v)) is true if and only if H(  

€ 

h ) is true (by first-order logic). 
H(  

€ 

h ) is true if and only if h ∈ A* (because H(v) expresses A*). 
h ∈ A* if and only if diag(h) ∈ A (by the definition of A*). 

 
So:  ∀v(v =   

€ 

h  → H(v)) is true if and only if diag(h) ∈ A. 
 
But diag(h) is the code for ∀v(v =   

€ 

h  → H(v)).  So ∀v(v =   

€ 

h  → H(v)) is a Gödel 
sentence for A.   
 

I call this the “Lower Diagonal Lemma” (a term I just made up) because it is a 
consequence of a more general theorem that I will introduce later on (Lesson 10), which I 
will call the “Upper Diagonal Lemma”.   
 
Lemma 2:  If a set A is arithmetic, then so is its complement (the set of numbers not in A), 
  

€ 

˜ A .  Proof:  The negation of the formula that expresses A expresses   

€ 

˜ A . 
 
 
The Undefinability of Arithmetic (Tarski’s Undefinability Theorem) (drum roll, trumpets): 
The set of codes of formulas in N is not arithmetic. 
 
In other words, the set of Gödel numbers of the true formulas of LA is not arithmetic. 
 

Proof:   
 
Let T be the set of codes of true formulas of LA.  
Suppose, for a reductio, that T is arithmetic.   
Then by Lemma 2, the complement of T,   

€ 

˜ T , is arithmetic too.   
(  

€ 

˜ T  comprises the codes of expressions of LA that are not formulas and the codes of 
formulas of LA that are not true.)  
By the Gödel Diagonal Lemma, there is a Gödel sentence G for   

€ 

˜ T .   
Since G is a Gödel sentence for   

€ 

˜ T , G is true if and only if #(G) ∈   

€ 

˜ T .   
So G is true if and only if it is not true.  Contradiction! 
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Lesson 8:  Arithmetization of Syntax and the First 
Incompleteness Theorem 
 
In this lesson I will define a theory of arithmetic and demonstrate that the set of codes of 
sentences that are provable in that theory is Σ1 (and therefore arithmetic).  Gödel’s first 
incompleteness theorem is just a short step beyond that. 
 
Recall that by a theory I just mean a set of formulas.  (Formerly I have said that a theory 
was a set of sentences⎯no free variables.  But now that we understand that formulas can 
be true, if they are satisfied by every variable assignment, we can allow that theories 
include formulas with free variables.)  Smullyan uses the term “system” where I say 
“theory”.  Other people, e.g., Boolos and Jeffrey, use the term “theory” to mean set of 
formulas closed under logical consequence.  (So if A is a theory and A | –   Q, then Q ∈ A.)  
But I will not assume that every theory is closed under logical consequence. 
 
If Th is a theory in some language and Q is a formula of that language, we will say that 
there is a proof of Q in Th if and only if there exists a finite sequence of formulas (in the 
pertinent language) such that every member of the sequence is either an axiom of QL 
(remember that concept from Lesson 5) or a member of Th or follows from previous lines 
by Modus Ponens or Generalization.   
 
If there is a proof of Q in Th, then we will say that Q is a theorem of Th.  (This is often 
symbolized thus:  | –   Th Q.)  The set comprising the theorems of a theory Th is designated 
thus:  Con(Th).  (It does not matter now whether we think of consequence as semantic 
consequence or syntactic consequence; for given soundness and completeness—which 
we proved, but only for a different system—these two concepts of consequence are co-
extensive.) 
 
If Th is an effectively decidable set of formulas (so that, by Church’s thesis, both the set 
of codes of Th and the set of codes of the complement of Th are Σ1), then Th is an axiom 
system and the members of Th together with the axioms of QL are axioms.  (Note well:  It 
can happen that Th is decidable although Con(Th) is not.) 
 
 
Peano Arithmetic 
 
Peano arithmetic (after Giuseppe Peano, although he did not invent it), or P.A., for short, 
is a theory in the language of arithmetic that consists of nine specific formulas and also 
all of the infinitely many formulas that fit the form of one particular axiom scheme. This 
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theory qualifies as an axiom system because there is an algorithm for deciding whether or 
not a formula is a member of the theory:  Check whether it is one of the nine specific 
formulas and whether it has the form of the axiom scheme.   
 
The nine axioms of P.A. 
 
N1: (xʹ′ = yʹ′ → x = y) 
N2: ¬0 = xʹ′ 
N3: (x + 0) = x 
N4: (x + yʹ′) = (x + y)ʹ′ 
N5: (x • 0) = 0 
N6: (x • yʹ′) = ((x • y) + x) 
N7: (x ≤ 0 ↔ x = 0) 
N8: (x ≤ yʹ′ ↔ (x ≤ y ∨ x = yʹ′)) 
N9: (x ≤ y ∨ y ≤ x) 
 
Think of x as an abbreviation of v∗ and think of y as an abbreviation of v∗∗.  If you look 
at these nine formulas, you will readily recognize that they are all true.  That is, they are 
all satisfied by every variable assignment in the intended interpretation of the language of 
arithmetic. 
 
The induction scheme 
 
Where F is any formula (in the language of arithmetic) (containing perhaps variable x 
free, as well as perhaps other free variables), and v is any variable that does not occur in 
F, let Fv[y] (notice the square brackets) abbreviate a formula of the following form: 
 

 ∀v(v = y → ∀x(x = v → F)) 
 
(So the subscript on Fv[y] indicates a variable that does not occur in F.)  Then every 
formula of the following form is an axiom of P.A.: 
 
N10: (Fv[0] → (∀x(F → Fv[xʹ′]) → ∀xF)) 
 
Dispensing with the abbreviation, we can write out N10 in full as follows (remember that 
v is not in F at all): 
 
(∀v(v = 0 → ∀x(x = v → F)) → (∀x(F → ∀v(v = xʹ′ → ∀x(x = v → F))) → ∀xF)). 
 
You can recognize this as stating a principle of induction as follows:   
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∀v(v = 0 → ∀x(x = v → F)):  This is equivalent to ∀x(x = 0 → F) and says that 0 
satisfies F. 
∀x(F → ∀v(v = xʹ′ → ∀x(x = v → F))):  This says that if x satisfies F, then the successor 
of x satisfies F.  (Notice that the second occurrence of “∀x” “cuts off” the first one, so 
that only the occurrence of “x” in “xʹ′” is in the scope of the first occurrence of “∀x”.) 
∀xF:  This says, of course, that everything satisfies F. 
 
Good question:  Why don’t we just use the following as the axiom scheme?   
 
(F0/x → (∀x(F → Fxʹ′/x) → ∀xFx)) 
 
Answer:  Because the more complicated one is easier to arithmetize.  That is, it is easier 
to show that the set of codes of such formulas is expressible by a formula in the language 
of arithmetic. 
 
 
The Arithmetization of Proof 
 
Our objective is to find a formula of the language of arithmetic that expresses the set of 
codes of formulas that are provable in P.A.  We will do this by defining a series of 
abbreviations of formulas that will be used in building up the target formula.  We began 
the necessary series of definitions in the previous lesson, in the definitions of Pow(w) (w 
is a power of 13), xy = z (concatenation of two expressions), x1x2, …xn = z 
(concatenation of n expressions), xBy (begins), xEy (ends), xPy (part of) and 
x1x2…xnPy.  
 
1. Sequences.  Recall that the symbol # is used to represent sequences of formulas and 

that it has Gödel number δ (the base 13 digit for the number twelve).  We want to find 
a formula that expresses the fact that x is the code for a sequence, not the code for a 
formula or other expression.  Let K11 be the set of codes whose base 13 numerals do 
not contain δ.  The members of K11 are codes of expressions that are not sequences.  
If 〈n1, n2, …, nm〉 is a sequence of numbers in K11, then δn1δn2δ … δnmδ (i.e., the 
number that is written this way in base 13, substituting the numeral for n1 for “n1”, 
etc.) is a sequence number for the sequence 〈n1, n2, …, nm〉.  The formula that 
expresses the set of sequence numbers x is: 

 
  (δBx ∧ δEx ∧ δ ≠ x ∧ ¬δδPx ∧ (∀y ≤ x)(δ0yPx → δBy)) 
 
 Abbreviate this:  Seq(x) 
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 To understand the last conjunct of Seq(x), recall, from Lesson 5, that, while 0 is the 
Gödel number of the prime symbol, ʹ′, we do not assign Gödel numbers to expressions 
of more than one symbol that begin with a prime.  So a sequence can contain the 
expression #ʹ′# but not, for example, #ʹ′ʹ′¬v#.  So the number δ0δ can be part of a 
sequence number, but the number δ0076δ cannot be part of a sequence number.  The 
last conjunct in Seq(x) secures that result. 

 
2. Membership in a sequence.  There is a relation that holds between x and y if and only 

if y is a code for a sequence (a sequence number) and x is the code for a member of 
that sequence.  The following formula expresses that relation: 

 
  (Seq(y) ∧ δxδPy ∧ ¬δPx) 
 
 Abbreviate this:  x In y 
  
 From now on, (∀x In y) … abbreviates (∀x ≤ y)(x In y → …). Notice that this makes 

(∀x In y) a bounded quantifier. 
 
3. Earlier in a sequence.  We want a formula that expresses the relation between x, y 

and z when z is the sequence number for a sequence and the expression for which x is 
the code is earlier in that sequence than the expression for which y is the code: 

 
  (x In z ∧ y In z ∧ (∃w ≤ z)(wBz ∧ x in w ∧ ¬ y In w) 
 
 Abbreviate this:  x 

    

€ 


z
 y 

 
From now on, (∃z,w 

    

€ 


x
 y) …  abbreviates ∃z∃w(z 

    

€ 


x
 y ∧ w 

    

€ 


x
 y ∧ …).   

 
4. Formation rules:  We want a formula that expresses the relation between x, y and z 

that holds when x and y are the codes of expressions Ex and Ey and z is the code for 
the expression (Ex → Ey).  The following formula expresses that relation: 

 
  2x8y3 = z   
 
 (Remember that 2 is the code for (, 8 the code for →, and 3 the code for ).)  

Abbreviate this as x imp y = z.  Similarly, the relations between x, y and z when z is 
the code for (Ex + Ey), (Ex • Ey), Ex = Ey, or Ex ≤ Ey  can be expressed by formulas 
that we abbreviate as x pl y = z, x tim y = z, x id y = z, and x le y = z, respectively.  
And the relations that hold between x and y when y is the code for ¬Ex or Exʹ′ can be 
expressed by formulas that we abbreviate as neg(x) = y and s(x) = y, respectively. 
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From now on, I first give the abbreviation, I then state in English the relation to be 
expressed, and I then give the formula that expresses it. 
 
5. St(x): x is the code of a string of stars (asterisks):  (∀y ≤ x)(yPx → 5Py) 
 
6. Var(x):  x is the code for a variable:  (∃y ≤ x)(St(y) ∧ 6y = x) 
 
7. Num(x):  x is the code of a numeral.  We already have an abbreviation for this, 

Pow(x), but in this context it might be helpful to use a different mnemonic.  (Recall 
that the numerals have as their codes, 1, 10, 100, 1000, etc. (writing in base 13).) 

 
Observe that we can represent the grammatical construction of a term as a sequence that 
starts with variables or numerals or some of both, forms terms from them, forms terms 
from those terms, and so on.  For example, we can represent the construction of the term 
((x • 0ʹ′) + y) as follows:  〈0ʹ′, x, y, (x • 0ʹ′), ((x • 0ʹ′) + y), ((x • 0ʹ′) + y)ʹ′〉. 
 
8. TermOp(x, y, z):  z is the code for an expression that results from applying one of 

the basic term-forming operations to the expressions for which x and y are codes:  
  (x pl y = z ∨ x tim y = z ∨ s(x) = z) 
 
9. TermSeq(x):  x is the sequence number for a sequence of numbers representing the 

formation of a term:   
  (Seq(x) ∧ (∀y In x)(Var(y) ∨ Num(y) ∨ (∃z,w 

    

€ 


x
 y)TermOp(z, w, y))) 

 For example, the code for the following expression will satisfy TermSeq(x): 
 
 #x#0ʹ′#f∗(x0ʹ′)#0ʹ′ʹ′#f∗∗(0ʹ′ʹ′f∗(x0ʹ′))# 
 
10. Term(x):  x is the code for a term:  ∃y(TermSeq(y) ∧ x In y). 
 Notice that this is a Σ1-formula, but not a Σ0-formula. 
 
11. Atom(x):  x is the code of an atomic formula:   
 (∃y ≤ x)(∃z ≤ x)(Term(y) ∧ Term(z) ∧ (y id z = x ∨ y le z = x)) 
 
12. Gen(x, y):  y is the code of a universal quantification of the formula whose code is 

x:  (∃z ≤ y)(Var(z) ∧ 9zx = y)  Notice that this doubles as a formation rule and an 
inference rule in our system. 

 
At this point, observe that formulas can be built up from other formulas by any of three 
formula-building operations: Adding a negation sign, inserting an arrow between two 
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formulas and putting parentheses on the outside, or adding a universal quantifier.  For 
example, we can represent the construction of the formula ∀x(Fx → Gx) as follows:  
〈Fx, Gx, (Fx → Gx), ∀x(Fx → Gx)〉 
 
13.  FormOp(x, y, z):  z is the code for an expression that results from applying one of 

the three formula-forming operations to the expressions for which x and y are codes:   
 x imp y = z ∨ neg(x) = z ∨ Gen(x, z) 
 
14. FormSeq(x):  x is the sequence number for a sequence of codes representing the 

formation of a formula:   
 (Seq(x) ∧ (∀y In x)(Atom(y) ∨ (∃z,w 

    

€ 


x
 y)FormOp(z, w, y))) 

 For example, the code for the following expression will satisfy FormSeq(x): 
 
 #v∗=0ʹ′#v∗=0ʹ′ʹ′#¬v∗=0ʹ′ʹ′#(v∗=0ʹ′→¬v∗=0ʹ′ʹ′)# 
 
15. Form(x):  x is the code for a formula in the language of arithmetic:   
 ∃y(FormSeq(y) ∧ x In y) 
 Notice that this is a Σ1-formula, but not a Σ0-formula. 
 
16. Ax(x): x is the code of an axiom … Let’s skip this for the moment and come back to 

it later. 
 
17. x imp z = y:  We have already defined this, back at step 4, but I mention it again, 

because it also serves define the relation:  z is the code for an expression derivable 
by Modus Ponens from the expressions for which x and y are the codes 

 
18. Der(x, y, z):  z is the code for an expression that is derivable by either Modus 

Ponens or Generalization from the expressions for which x and y are codes:   
 x imp z = y ∨ Gen(x, z) 
 
19. Pf(x): x is the sequence number of a proof in Peano arithmetic:   
 (Seq(x) ∧ (∀y In x)(Ax(y) ∨ (∃z,w 

    

€ 


x
 y)Der(z, w, y))) 

 
20. Prov(x):  x the code of a formula provable in P.A.:  ∃y(Pf(y) ∧ x In y). 
 
Ta da!  Prov(x) is a formula that expresses the set whose members are all and only the 
codes of formulas that are theorems of Peano arithmetic.  (It is a Σ1-formula, but not a Σ0-
formula.)  And if you want, by cashing in all the abbreviations, you can even write it out 
(but there are better ways to spend your time).  Except for one thing…  We still have not 
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done item #16 above.  We need to show that there is a formula that expresses the set of 
axioms (the usual axioms of QL and the special axioms of Peano arithmetic).   
 
In Lesson 5, we encountered the seven axiom schemes of QL.  In this lesson we have 
encountered the nine axioms of Peano arithmetic and the induction scheme of Peano 
arithmetic.  This gives us seventeen axioms or axiom schemes.  Suppose L1(x) is a 
formula that expresses the set of numbers x such that x is the code of an axiom of type 
L1, and L2(x) is a formula that expresses the set of numbers x such that x is the code of 
an axiom of type L2, …, and N1(x) is a formula that expresses the set whose sole 
member is the code for N1, and N2(x) is a formula that expresses the set whose sole 
member is the code for N2, and …, and, finally, N10(x) is a formula that expresses the 
set whose members are codes of formulas of the type N10 (the induction scheme).  Then 
a formula that expresses the set of numbers x such that x is the code for an axiom is: 
 

(L1(x) ∨ L2(x) ∨ … ∨ N1(x) ∨ N2(x) ∨ … ∨ N12(x)) 
 

This is the formula that we abbreviate as Ax(x).  I won’t bother to write out all nineteen 
of these disjuncts, but here are a few examples, including the hard cases: 
 
L1(x) is: (∃y ≤ x)(∃w ≤ x)(∃z ≤ x) (Form(x) ∧ w imp y = z ∧ y imp z = x). 
 
L7(z):  For this one, observe that and axiom of this form can be written in the form 
(v = t → (X1vX2 → X1tX2).  (So, in X1vX2, X1 is the part of the formula that comes 
before v, and X2 is the part of the formula that comes after v.)  Then the formula that 
expresses the codes of axioms of type L7 can be expressed thus: 
 
(∃u ≤ z)(∃t ≤ z)(∃p ≤ z)(∃q ≤ z)(∃x ≤ z)(∃y ≤ z) (∃w ≤ z) (Var(u) ∧ Term(t) ∧ 
Form(p) ∧ Form(q) ∧ xuy = p ∧ xty = q ∧ p imp q = w ∧ 2uηt8w3 = z). 
 

N1(x):  Let   

€ 

n1
___

 be the numeral that denotes the code of axiom N1.  Then the formula that 

expresses the set containing the code of axiom N1 is simply:  x =   

€ 

n1
___

. 
 
N10(z):  First we identify a formula Ef(v, y, f, w) that expresses the set of quadruples of 
codes representing variables v and y and formulas F and formulas of form ∀v(v = y → 
∀x(x = v → F)), respectively, thus:   
 
(∃x ≤ w)(Var(v) ∧ Var(y) ∧ Var(x) ∧ Form(f) ∧ ¬vPf ∧ 9v2vηy89x2xηv8f33 = w). 
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Then the formula that N10(z) abbreviates (satisified by the code for any instance of the 
induction scheme) is as follows: 
 

(∃v ≤ z)(∃x ≤ z)(∃f ≤ z)(∃w1 ≤ z)(∃w2 ≤ z) 
(Ef(v, 0, f, w1) ∧ Ef(v, xʹ′, f, w2) ∧ 2w1829x2f8w2389xf33 = z). 

 
 
Thus, we have proved: 
 
The Arithetization of Proof:  The set of codes of provable formulas (provable in P.A.) is 
arithmetic.   
 
This is so, because Prov(x) is a formula of LA.  Indeed, we can say something stronger:  
The set of codes of provable formulas (provable in P.A.) is a Σ1 set, because Prov(x) is a 
Σ-formula.  That is evident because Prov(x) is ∃y(Pf(y) ∧ x In y), and (Pf(y) ∧ x In y) is 
Σ.  To see that (Pf(y) ∧ x In y) is Σ, review the construction and note that we start with Σ0 
formulas and compose new formulas only in ways that conform to the definition of a Σ-
formula.  Since Prov(x) is a Σ-formula, and (by Smullyan’s theorem) the set of codes of 
provable formulas is Σ1, i.e., recursively enumerable, and the set of provable formulas is 
effectively enumerable.   
 
 
Gödel’s First Incompleteness Theorem (first formulation): There are true formulas in LA 
that are not theorems of P.A. 
 

First Proof (using the Undefinability of Arithmetic): 
 
By the Undefinability of Arithmetic, the set of codes of truths of arithmetic is not 
arithmetic.  We have seen that the set of codes of theorems of P.A. is Σ1, and 
therefore, certainly, arithmetic.  So, where N is the set of truths of arithmetic, N ≠ 
Con(P.A.).   
 
Case 1:  There is a formula of arithmetic Q such that Q ∈ Con(P.A.) and Q ∉ N.  
But presumably all of the theorems of P.A. are true.  So this can’t be right.  We are 
left with: 
 
Case 2:  There is a formula of arithmetic Q such that Q ∉ Con(P.A.) and Q ∈ N.  Q 
is a truth in LA that is not a theorem of P.A. 
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Second Proof (applying Gödel’s Diagonal Lemma to the set of codes of unprovable 
formulas): 

 
Let P be the set of Gödel numbers of theorems of P.A. and 

€ 

˜ P  be the complement of 
that set, viz., the set comprising the codes of expressions that are not formulas and the 
codes of formulas in the language of arithmetic that are not theorems of P.A.  
 
The formula Prov(x) defined above expresses P.  So the formula ¬Prov(x) 
expresses

€ 

˜ P .  So 

€ 

˜ P  is arithmetic too.  So by the Gödel Diagonal Lemma, there is a 
Gödel sentence G for 

€ 

˜ P .  So G is true if and only if #(G) ∈ 

€ 

˜ P .   
 
Case 1: G is false and #(G) ∉ 

€ 

˜ P .  In that case, #(G) ∈ P, which means that G is a 
theorem of P.A.  But presumably, no falsehoods are theorems of P.A.  So we are left 
with: 
 
Case 2: G is true and #(G) ∈ 

€ 

˜ P , which means that G is not provable in P.A.  So 
some truths of arithmetic are not provable in P.A. 
 

Note:  In this second proof, there is no mystery about what G says.  If you wished, you 
could write it out. 

€ 

˜ P  is arithmetic; so by Lemma 1 from Lesson 7, 

€ 

˜ P * is arithmetic. The 
formula that expresses 

€ 

˜ P * is ∃y(Diag(x, y) ∧ ¬Prov(y)).  Abbreviate this as K(x).  Let k 
be the code of K(x), and   

€ 

k  the numeral denoting k.  Then the Gödel G sentence for 

€ 

˜ P  is 
∀x(x =   

€ 

k  → K(x)).  (See the proof of the Gödel Diagonal Lemma.)  Since G is true if 
and only if its code belongs to the set of codes of expressions that are not formulas and 
formulas that are not provable, popular expositions of Gödel’s theorem often report that 
Gödel finds a sentence that says, “I am not provable”.  But if you think carefully about 
the meaning of K(x), it’s actually not very easy to think of G as saying that, for K(x) does 
not express 

€ 

˜ P  but 

€ 

˜ P *.  Ignoring the difference between ∀x(x =   

€ 

k  → K(x)) and K(  

€ 

k ), 
what G says is something more like this:  “My code is in the set of codes of formulas the 
codes of whose diagonals are in the set of codes of expressions that either are not codes 
of formulas or are codes of formulas that are not provable.” or, more briefly, “The 
diagonal of my code is not the code of a provable formula.” 
 
Note also:  We have proved that G really is true (assuming that P.A. is true)!  (How can 
we know this if we cannot derive it from P.A.?) 
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Why is this theorem called Gödel’s incompleteness theorem? 
 
Definition:  Say that a theory in a language is complete if and only if for every sentence 
in that language either it or its negation is a theorem of the theory.  (We do not require 
that every formula or its negation be true.  For example, we cannot assume that either 
x = 5 or x ≠ 5 is true.  That would be like assuming that either ∀x x = 5 or ∀x x ≠ 5 is 
true.)  (Obviously, this a different sense of “complete” than we speak of in saying that our 
deductive calculus is “complete”.  We did, however, encountered this notion of 
completeness in Lesson 3.) 
 
Gödel’s First Incompleteness Theorem (second formulation): P.A. is incomplete. 
 

Proof:  G, in the second proof above, is a sentence.  As we have seen, G is true and 
not a theorem of P.A.  But every theorem of P.A. is true; so if ¬G is a theorem of 
P.A., then ¬G is true, which means that G is false, contrary to what we have seen.  So 
¬G is not a theorem of P.A. either.  So neither G nor ¬G is a theorem of P.A.  So 
P.A. is incomplete. 
 

We have just seen that the first formulation can be strengthened to “There are true 
sentences of arithmetic that are not theorems of P.A.” and that this implies the second 
formulation.  The second formulation implies this strengthening of the first formulation, 
because N itself is a complete theory:  Since N is complete and P.A. is incomplete, there 
are sentences in N that are not theorems of P.A.   
 
We still have not formulated Gödel’s first incompleteness theorem in the manner in 
which nowadays it is most commonly formulated.  We will be able to do that after we 
give the following definition: 
 
Definition: A set of sentences S is correctly axiomatizable if and only if there is a decidable 
set A of true formulas such that all members of S are theorems of A.  When S is correctly 
axiomatizable in this way, we call the decidable set A the nonlogical axioms (i.e., other 
than those in QL), 
 
In light of this definition, what we have shown is the following:   
 
Gödel’s First Incompleteness Theorem (third formulation):  The set of truths of 
arithmetic is not correctly axiomatizable. 
 

Proof:  Suppose that N is correctly axiomatizable.  Then there is a decidable set of 
true formulas Ax such that every member of N is a theorem of Ax.  By Church’s 
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thesis, the set of codes of members of Ax is recursively decidable.  In that case, we 
can find a Σ1-formula Ax(x) that expresses that set and prove, just as we did above in 
the Arithmetization of Proof for P.A., that the set of theorems of Ax is Σ1 and 
therefore arithmetic.  So by the proofs of either of the other formulations, not every 
member of N is provable in Ax, contrary to assumption. 

 
Note:  There is reason not to be satisfied with these proofs, namely, that we have had to 
assume that the theorems of P.A. are all true.  Kurt Gödel’s own original proof (published 
in German in 1931) did not assume this, in fact.  All he assumed was that the theory was 
ω-consistent, which means that for each formula F, if for all n, F(  

€ 

n ) is true, then ∀vF(v) 
is true.  (True theories need not in general be ω-consistent, since not every object has a 
name; but every natural number has a name; so one might expect that a theory of 
arithmetic would be ω-consistent.)  So there is a place for us to try to prove something 
still more general.  We will do that, in fact, as a short detour (in Lesson 10) on our way to 
proving the undecidability of first-order logic.  This more general theorem will not take 
for granted the truth of a theory arithmetic or even its ω-consistency, but only its 
consistency. 
 
 
The Enumerability of Nonformulas 
 
Now, while we are thinking about the recursive enumerability of formulas, having shown 
that the set of codes of formulas is Σ1, I want to show also that the set of codes of strings 
of symbols that are not formulas is also recursively enumerable, i.e., Σ1.  There is a small 
reason to do that now, and a larger reason to have that result on board for use in proving 
the more general form of Gödel’s First Incompleteness Theorem (in Lesson 10). 
 
The small reason to prove now that the set of codes of nonformulas is enumerable is that 
we still cannot quite show that Con(P.A.) is correctly axiomatizable.  The interest in the 
Gödel’s incompleteness theorem, in the third formulation above, would seem to be 
somewhat diminished if not even Con(P.A.) is correctly axiomatizable.  The problem is 
that we do not yet have a proof that the set of axioms of P.A. is decidable.  Intuitively, 
that set is decidable (just see whether a given sentence has the form of one of the axiom 
schemata or not).  But we would like to have an honest proof.  We have seen that the set 
of codes of axioms is Σ1, since Ax(x) is Σ.  So it would suffice to show that the 
complement of the set of codes of axioms is Σ1 too.  That would show that the set of 
codes of axioms as recursively decidable.  
 
Inspection of the definition of Ax(x) reveals that the only occurrences of unbounded 
quantifiers are in the formulas Term(x) and Form(x).  (The first of these formulas is 
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∃y(TermSeq(y) ∧ x In y); the second is ∃y(FormSeq(y) ∧ x In y).)   So our challenge 
is to find equivalent formulas (i.e., expressing the same sets of numbers) containing only 
bounded quantifiers.  Here I follow the argument on pp. 53-54 of Smullyan. 
 
Definition:  π(x) = 13((x 

×
 x) + x +1) 

 
Our interest in this strange function is that it will provide the bound that we can add to 
our existential quantifiers. 
 
Recall from item 4 above (concerning sequences) that K11 is the set of codes whose base 
13 numerals do not contain δ.  That is, members of K11 are not codes for sequences, only 
codes of strings of symbols in the language of arithmetic.   
 
Theorem:   Suppose 〈a1, . . . , ak〉 is a sequence of numbers in K11, and choose n such that 
k ≤ n and for all i ≤ k, we have ai ≤ n.  Let x = δa1δ . . . δakδ.  Then x ≤ π(n). 
 
Proof: Let y = δnδn . . . δnδ.   
                                 n 
 
In other words, y is a number whose numeral in base 13 consists of the numeral δ 
followed by n occurrences of nδ.    
 
It is evident that x = δa1δ . . . δakδ ≤ δnδn . . . δnδ = y.  So to show that x ≤ π(x), it will 
suffice to show that y ≤ π(x).   
 
For any number z, let L(z) be the length of the base 13 numeral denoting z.  There are n 
occurrences of the numeral for n in the base 13 numeral for y, and there are n +1 
occurrences of δ in that numeral.  So L(y) = (n × L(n)) + n + 1.  But the length of the 
numeral for a number is never greater than the number.  So L(n) ≤ n.  L(y) ≤ (n × n)  + n + 
1.  Moreover, if we take the length of a numeral for a number and raise the base to the 
power of that length, the result is always a larger number.  (For example, writing in base 
ten, L(967) = 3, and 103 = 1000.)  So y ≤ 13L(y).  So y ≤ 13((n 

×
 n) + n +1) = π(n).   

 
End of Proof 
 
Recall that Term(x) is defined as ∃y(TermSeq(y) ∧ x In y) (item 13 above), where 
(TermSeq(y) ∧ x In y) is Σ0.  We now want to show (i) that the formula 
(∃y ≤ π(x))(TermSeq(y) ∧ x In y) expresses this set as well, and (ii) that this set is 
recursive (both it and its complement are Σ1).   
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(i) (∃y ≤ π(x))(TermSeq(y) ∧ x In y) expresses the same set as Term(x): 
 

Obviously, every member of the set expressed by (∃y ≤ π(x))(TermSeq(y) ∧ x In y) 
is in the set expressed by Term(x).  The challenge is to show the converse. 
 
For a given term t, suppose s is a shortest sequence (there might be several, all 
equally short) such that 〈#(t), #(s)〉 is a member of the set of pairs expressed by 
(TermSeq(y) ∧ x In y).   
 
For some a1, . . ., ak,  the code for s is δa1δ . . . δakδ.  Since s is a shortest such 
sequence, ak is the code of t.   
 
Moreover, the code for an expression is never less than the number of term-forming 
operations required to construct the expression.  So k ≤ ak.  And for all i ≤ k, we have 
ai ≤ ak.  So by the Theorem, δa1δ . . . δakδ ≤ π(ak).  So 〈#(t), #(s)〉 is a member of the 
set of pairs expressed by y ≤ π(x) as well.  So #(t) is a member of the set expressed by 
(∃y ≤ π(x))(TermSeq(y) ∧ x In y). 
 

(ii)  Both (∃y ≤ π(x))(TermSeq(y) ∧ x In y) and its negation express Σ1 sets (so that the 
set expressed is recursive):   
 

This formula is obviously equivalent to  
∃z(∃y ≤ z)(z = π(x) ∧ TermSeq(y) ∧ x In y), which in turn is equivalent to 

 
∃v∃w∃u∃z(∃y ≤ z)((x • x) = v ∧ v + x = w ∧ w + 1 = u ∧  z = 13u ∧ TermSeq(y) 
∧ x In y) 
 
which is Σ and which, therefore, expresses a Σ1 set.  (Here we utilize the assumption 
that exponentiation is Σ1.)  The negation of this formula is equivalent to:  
 
(∀y ≤ π(x))(TermSeq(y) → ¬(x In y)), 
 
which in turn is equivalent to  
∃z(z = π(x) ∧ (∀y ≤ z)(TermSeq(y) → ¬(x In y))). 
 
Since TermSeq(y) is Σ0, this formula can similarly be seen to be Σ.  Therefore it 
expresses a Σ1 set. 
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Similarly, we can show that the complement of the set of codes of formulas is Σ1.  Let 
NonForm(x) be a Σ1-formula that expresses the complement of the set of codes of 
formulas.   
 
Next, for each axiom scheme and each axiom, we can write a Σ-formula that expresses 
the complement of the set of codes of axioms that belong to type.  For example, the 
complement of the set of codes of axioms of type L1 (see Lesson 5), is expressible by 
means of the following Σ-formula: 
 

(∀y ≤ x)(∀w ≤ x)(∀z ≤ x) ((w imp y = z ∧ y imp z = x) → NonForm(x)) 
 
(This is Σ because the antecedent of the conditional is Σ0.)  Finally, we can construct a Σ-
formula that expresses the complement of the set of codes of axioms by conjoining these 
formulas that express the complements of the set of codes of axioms of a given type.  
Since the result is Σ, we know, by Smullyan’s theorem, that it is expressible by a Σ1-
formula as well.   
 
So since the both the set of codes of axioms and the complement of that set are Σ1, the set 
of codes of axioms is recursively decidable. 



Lesson 9:  Definability in a Theory 
 
Recall that by a theory I just mean a set of formulas.  A theory that will be of use to us (in 
proving the undecidability of first-order logic) is the system R (after Raphael Robinson).  
R consists of: 
 

Ω1:  All sentences (  

€ 

m +  

€ 

n ) =   

€ 

k , where m + n = k. 
Ω2:  All sentences (  

€ 

m •  

€ 

n ) =   

€ 

k , where m × n = k. 
Ω3:  All sentences   

€ 

m  ≠   

€ 

n , where m and n are distinct numbers. 
Ω4:  For each n, v∗ ≤   

€ 

n  ↔ (v∗ = 0 ∨ v∗ = 0ʹ′ ∨ … ∨ v∗ =   

€ 

n ). 
Ω5:  For each n, v∗ ≤   

€ 

n  ∨   

€ 

n  ≤ v∗. 
 
Again, the “axioms” of a theory are understood to include not only the special axioms 
that are actually members of the theory but also the logical axioms of QL (not to be 
confused with Q).  To say that a sentence P is provable in a theory A is to say that there 
exists a proof in which the last line is P, where a proof is a sequence of sentences in the 
pertinent language and which every line is either a member of A (an axiom) or can be 
derived from earlier lines by either Modus Ponens or Generalization.  In the case of R, 
the axioms will be any of the axioms of QL as well as any of the axioms specified by  
Ω1–Ω5. 
 
One more bit of terminology: To say that a formula is refutable in a theory is to say that 
there is a proof of the negation of that formula in the theory.  If a theory is not 
syntactically complete, then there will be formulas that are neither provable nor refutable 
in the theory. 
 
So far, we have been proving our theorems by discovering facts about expressibility, viz., 
the expressibility of sets of numbers by formulas in the language of arithmetic.  In order 
to introduce a different way of doing things, let me first formulate in other terms the 
concept of expressibility.  What we have been saying is that that F(v1, …, vm) expresses 
the relation R of m-tuples if and only if: 
 

 F(  

€ 

n 1, …,   

€ 

n m) is true if and only if 〈n1, …, nm〉 ∈ R. 
 

The same concept could be expressed in different words as follows:  Recall that N is the 
set of truths of arithmetic.  If a sentence is a truth of arithmetic, and therefore a member 
of N, then it is of course provable in N, and if a sentence in the language of arithmetic is 
false, so that its negation is true and therefore provable in N, then the sentence is 
refutable in N.  (Of course, by Gödel’s Theorem, we know that N will not be correctly 
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axiomatizable.)  So we could just as well say that F(v1, …, vm) expresses the relation R of 
m-tuples if and only if the following two conditions hold: 
 

(1)  If 〈n1, …, nm〉 ∈ R, then F(  

€ 

n 1,…,  

€ 

n m) is provable in N. 
(2)  If 〈n1, …, nm〉 ∉ R, then F(  

€ 

n 1,…,  

€ 

n m) is refutable in N. 
 
Now we are going to generalize the concept of expressing a set by allowing that the 
pertinent provability and refutability might be some theory less than all of N.  In 
particular, we will be interested in what is provable and refutable in R.  Also, in 
generalizing in this way, we will substitute the word “define” for the word “express”.  So 
we will speak of defining a set in a theory rather than expressing a set.  So: 
 
A formula F(v) is said to define a set A in a theory Th if and only if for all numbers n, the 
following two conditions hold: 
 

(1)  If n ∈ A, then F(  

€ 

n ) is provable in Th. 
(2)  If n ∉ A, then F(  

€ 

n ) is refutable in Th. 
 

A formula F(v1,…, vm) is said to define an m-ary relation R in a theory Th if and only if 
for all numbers, n1, …, nm: 
 

(1)  If 〈n1, …, nm〉 ∈ R, then F(  

€ 

n 1,…,  

€ 

n m) is provable in Th. 
(2)  If 〈n1, …, nm〉 ∉ R, then F(  

€ 

n 1,…,  

€ 

n m) is refutable in Th. 
 

In other words, if a formula defines a relation in a theory, then, returning to our earlier 
use of the term “express”, we could say that the formula expresses the relation from the 
point of view of the theory. 
 
As for functions, a formula F(v1,…, vm, vm+1) strongly defines an m-ary function fun in a 
theory Th if and only if for all numbers, n1, …, nm, nm+1: 
 

(1)  If fun(n1, …, nm) = nm+1, then F(  

€ 

n 1,…,   

€ 

n m,   

€ 

n m+1) is provable in Th, and 
(2)  if fun(n1, …, nm) ≠ nm+1, then F(  

€ 

n 1,…,   

€ 

n m,   

€ 

n m+1) is refutable in Th, and 
(3)  if fun(n1, …, nm) = nm+1, then the sentence, 

∀v(F(  

€ 

n 1,…,   

€ 

n m, v) → v =   

€ 

n m+1) 
 is provable in Th. 
 

(So “strong definability” pertains to functions only.  Without condition (3), we could not 
say that “according to Th”, fun really is a function, with a unique output for each of its 
arguments.) 
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A set (relation, function) is definable in a Th if and only if there exists a formula in the 
language of the theory that defines it. 
 
What we now want to work our way up to is the following claim:  All recursive sets and 
relations are definable in R, and all recursive functions are strongly definable in R.  (If 
necessary, review the definitions of recursive sets and relations, i.e., recursively definable 
sets and relations, and recursive functions in Lesson 6.) 
 
(As usual, terminology varies.  The term “represent” may be used where here I say 
“define”.  Here I follow Smullyan.) 
 
Exercise (easier than it sounds):  Prove that a set of numbers is arithmetic if and only if it 
is definable in N (the set of truths of LA).   
 
 
Outline of Proof: 
 
Definition:  We say that a formula F(v1, v2) enumerates a set A in a theory Th if and only 
if for every number n, the following conditions hold: 
 

(1) If n ∈ A, then there is a number m such that F(  

€ 

n ,   

€ 

m ) is provable in Th. 
(2) If n ∉ A, then for every number m, F(  

€ 

n ,   

€ 

m ) is refutable in Th. 
 
Definition:  We say that a formula F(v1, v2, ..., vm, vm+1) enumerates a relation R in a 
theory Th if and only if for all numbers n1, …, nm, the following conditions hold: 
 

(1) If 〈n1, …, nm〉 ∈ R, then there is a number n such that  
 F(  

€ 

n 1,…,   

€ 

n m,   

€ 

n ) is provable in Th. 
(2) If 〈n1, …, nm〉 ∉ R, then for every number n,  
 F(  

€ 

n 1,…,   

€ 

n m,   

€ 

n ) is refutable in Th. 
 
Definition:  We say that a formula F(v1, v2, ..., vm) separates relation A from relation B 
in a theory Th if and only if: 

 
(1) If 〈n1, …, nm〉 ∈ A, then F(  

€ 

n 1,…,   

€ 

n m) is provable in Th. 
(2) If 〈n1, …, nm〉 ∈ B, then F(  

€ 

n 1,…,   

€ 

n m) is refutable in Th. 
 

(Similarly, for separation of sets.) 
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Definition:  A theory is said to be Σ0-complete if and only if all true Σ0-sentences are 
provable in it. 
 
 
We will utilize the following four theorems: 
 
R is Σ0-complete:  R is Σ0-complete. 
 
The Enumeration Theorem: If Th is Σ0-complete, then all Σ1 relations are enumerable in 
Th. 
 
The Separation Theorem:  If all axioms of types Ω4 and Ω5 (in R) are provable in Th, 
then if A and B are disjoint relations enumerable in Th, then A and B are separable in Th. 

 
The Definability Theorem: If any two disjoint Σ1 relations are separable in Th, then all 
recursive relations are definable in Th. 
 
 
From these four theorems, we can immediately derive:   
 
Theorem 1:  All recursive relations are definable in R.  
 

Proof: By the Definability Theorem, it suffices to show that any two disjoint Σ1 
relations are separable in R.  Let A and B be two disjoint Σ1 relations.  Since R is Σ0-
complete, the Enumeration Theorem tells us that A and B are enumerable in R.  So by 
the Separation Theorem, they are separable in R. 
 

 
Note:  Throughout the following proofs, I will take for granted facts about provability 
that depend only on the logical axioms (from Lesson 5). 

 
 

R iz Σ0-complete (proof): 
(For a different presentation, see Smullyan, pp. 66-70.) 
 
Proposition 1: If w is any variable or numeral, (w ≤   

€ 

n  ↔ (w =   

€ 

0  ∨ w =   

€ 

ʹ′ 0  ∨ … ∨ w = 
  

€ 

n )) is provable in R—by Ω4, Generalization, and Universal Elimination (a derived rule; 
see example 3, Lesson 5). 
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Proposition 2:  All true atomic Σ0-sentences are provable in R.   
 

Case (i):  Sentences of the form   

€ 

m  =   

€ 

m  are provable in R because they are theorems 
of QL. 
 
Case(ii):  True sentences of the form   

€ 

m  ≤   

€ 

n  are provable in R:  Suppose that m ≤  n. 
Since   

€ 

m  =   

€ 

m  is provable, so is (  

€ 

m  =   

€ 

0  ∨   

€ 

m  =   

€ 

ʹ′ 0  ∨ … ∨   

€ 

m  =   

€ 

m  ∨ … ∨   

€ 

m  =   

€ 

n ).  
So by Proposition 1,   

€ 

m  ≤   

€ 

n  is provable in R. 
 
Case (iii): By Ω1 and Ω2, true sentences of the form (  

€ 

m +  

€ 

n ) =   

€ 

k  and (  

€ 

m •  

€ 

n ) =   

€ 

k  are 
provable in R. 

 
Proposition 3:  All false atomic Σ0-sentences are refutable in R. 
 

Case (i):  By Ω3, false sentences of the form   

€ 

m  =   

€ 

n  are refutable in R. 
 
Case (ii):  Suppose   

€ 

m  ≤   

€ 

n  is false.   So   

€ 

m  = 0,   

€ 

m  = 0ʹ′, …,   

€ 

m  =   

€ 

n  are all false.  So 
by case (i), they are all refutable.  So (  

€ 

m  = 0 ∨   

€ 

m  = 0ʹ′ ∨ … ∨   

€ 

m  =   

€ 

n ) is refutable.  
So by Proposition 1,   

€ 

m  ≤   

€ 

n  is refutable. 
 
Case (iii):  Suppose (  

€ 

m +  

€ 

n ) =   

€ 

k  is false.  Then for some number p ≠ k, m + n = p.  
By Proposition 2, (  

€ 

m +  

€ 

n ) =   

€ 

p  is provable in R, and, by Case (i),   

€ 

p  ≠   

€ 

k  is provable 
in R.  So, by first-order logic, (  

€ 

m +  

€ 

n ) ≠   

€ 

k  is provable and (  

€ 

m +  

€ 

n ) =   

€ 

k  is refutable in 
R.  
 
Case (iv): Suppose (  

€ 

m •  

€ 

n ) =   

€ 

k  is false.  Similar to Case (iii) … 
 
Proposition 4:  Suppose F(w) is a Σ0-formula having only w free.  Suppose that F(0), 
F(0ʹ′), …, F(  

€ 

n ), are all provable in R.  Then (∀w ≤   

€ 

n )F(w) is provable in R. 
 

Proof:  Assume the hypothesis.  Then each of (w = 0 → F(w)), (w = 0ʹ′ → F(w)), …, 
(w =   

€ 

n  → F(w)) is provable in R.  So ((w = 0 ∨ w = 0ʹ′ ∨ … ∨ w =   

€ 

n ) → F(w)) is 
provable in R.  But by, Proposition 1, (w ≤   

€ 

n  → (w =   

€ 

0  ∨ w =   

€ 

ʹ′ 0  ∨ … ∨ w =   

€ 

n )) is 
provable in R.  So (w ≤   

€ 

n  → F(w)) is provable in R.  So by Generalization, ∀w(w ≤ 
  

€ 

n  → F(w)) is provable in R.  But this is (∀w ≤   

€ 

n )F(w). 
 
 



L9: Definability  Page 121 

 
 

 

Theorem: R is Σ0-complete. 
 
We prove something stronger:  Every true Σ0-sentence is provable in R and every false 
Σ0-sentence is refutable in R  
 

Proof:  By induction on the complexity of sentences.   
 
Basis:  True atomic Σ0-sentences are provable in R.A, by Proposition 2.  False atomic 
Σ0-sentences are refutable in R, by Proposition 3. 
 
Induction Hypothesis:  Suppose that all Σ0-sentences having complexity less than or 
equal to k are provable if true and refutable if false.   
 
Induction Step:   
 
Case ¬:  If ¬P is true, then P is false, in which case, by IH, P is refutable, i.e., ¬P is 
provable.  If ¬P is false, then P is true, in which case P is provable, and ¬¬P is 
provable.   
 
Case →:  Exercise. 
 
Case (∀v ≤   

€ 

n ) (bounded quantifiers): Recall, from the definition of Σ0-sentences in 
Lesson 6 that the only remaining case is that of sentences of the form (∀v ≤   

€ 

n )F(v).   
 

Case 1: (∀v ≤   

€ 

n )F(v) is true.  Then each of F(0), F(0ʹ′), …, F(  

€ 

n ) is true.  So by 
the induction hypothesis, each of them is provable in R.  So by Proposition 4, (∀v 
≤   

€ 

n )F(v) is provable in R. 
 
Case 2: (∀v ≤   

€ 

n )F(v) is false.  Then for at least one m ≤ n, F(  

€ 

m ) is false and, by 
IH, refutable in R.  So by Proposition 2, case 2, both   

€ 

m  ≤   

€ 

n  and ¬F(  

€ 

m ) are 
provable in R.  So  (∀v ≤   

€ 

n )F(v) is refutable in R. 
 

End of proof. 
 
 

The Enumeration Theorem 
 
We will now prove that if Th is Σ0-complete, then all Σ1 relations are enumerable in Th. 
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Proof:  Suppose that Th is Σ0-complete.  Let R be any Σ1 relation, and let R(x1, x2, 
…, xm) be the Σ1-formula that expresses it.  Then (by the definition of Σ1-formulas), 
there is a Σ0-formula S(x1, x2, …, xm, y) such that: 
 

R(x1, x2, …, xm) is true if and only if ∃yS(x1, x2, …, xm, y) is true. 
 

We show that S(x1, x2, …, xm, y) enumerates the relation R in Th.   
 
1. Suppose that 〈n1, …, nm〉 ∈ R.  Then R(  

€ 

n 1,…,   

€ 

n m) is true, and for some number 
n, S(  

€ 

n 1,…,   

€ 

n m,   

€ 

n ) is true.  But this is a Σ0-sentence; so it is provable in Th. 
 
2. Suppose 〈n1, …, nm〉 ∉ R.  Then R(  

€ 

n 1,…,   

€ 

n m) is false, and for every n, S(  

€ 

n 1,…, 
  

€ 

n m,   

€ 

n ) is false and ¬S(  

€ 

n 1,…,   

€ 

n m,   

€ 

n ) is true.  But the latter is a Σ0-sentence.  So 
for every n, S(  

€ 

n 1,…,   

€ 

n m,   

€ 

n ) is refutable. 
 
End of proof. 

 
 
The Separation Theorem 

 
For simplicity, consider just the case of sets, as opposed to relations.  Suppose that all 
axioms of types Ω4 and Ω5 are provable in Th.  Suppose also that A and B are disjoint sets 
enumerable in Th.  We prove that A and B are separable in Th, i.e., that there is a formula 
F(x) such that: 
 

(1) If n ∈ A, then F(  

€ 

n ) is provable in Th. 
(2) If n ∈ B, then F(  

€ 

n ) is refutable in Th. 
 
Let A(x, y) be the formula that enumerates A, and let B(x, y) be the formula that 
enumerates B.  We prove that F(x) is ∀y(B(x, y) → (∃z ≤ y)A(x, z)), i.e., that this latter 
formula separates A and B.   

 
1. Suppose that n ∈ A.  We need to show that ∀y(B(  

€ 

n , y) → (∃z ≤ y)A(  

€ 

n , z)) is 
provable in Th. 
 

 Since A(x, y) enumerates A, there is some k, such that A(  

€ 

n ,   

€ 

k ) is provable in Th.   
 
 Since A and B are disjoint, n ∉ B.  Since B(x, y) enumerates B, for every m ≤ k 

(indeed for every m), B(  

€ 

n ,   

€ 

m ) is refutable and ¬B(  

€ 

n ,   

€ 

m ) is provable.   
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 So each of (y = 0 → ¬B(  

€ 

n , y)), (y = 0ʹ′ → ¬B(  

€ 

n , y)), …, (y =   

€ 

k  → ¬B(  

€ 

n , y)) is 
provable in Th.   

 
 So ((y = 0 ∨ y = 0ʹ′ ∨ … ∨ y =   

€ 

k ) → ¬B(  

€ 

n , y)) is provable in Th.   
 
 By Proposition 1 (which uses Ω4), (y ≤   

€ 

k  → (y =   

€ 

0  ∨ y =   

€ 

ʹ′ 0  ∨ … ∨ y =   

€ 

k )) is 
provable in Th.   

 
 So (y ≤   

€ 

k  → ¬B(  

€ 

n , y)) is provable in Th.   
 
 So (B(  

€ 

n , y) → ¬y ≤   

€ 

k ) is provable in Th.   
 
 So by Ω5, (B(  

€ 

n , y) →   

€ 

k  ≤ y) is provable in Th.   
 
 Since A(  

€ 

n ,   

€ 

k ) is provable too, (B(  

€ 

n , y) → (  

€ 

k  ≤ y ∧ A(  

€ 

n ,   

€ 

k ))) is provable in Th.   
 
 So ∀y(B(  

€ 

n , y) → (∃z ≤ y)A(  

€ 

n , z)) is provable in Th.   
 
2. Suppose n ∈ B.  We need to show that ∀y(B(  

€ 

n , y) → (∃z ≤ y)A(  

€ 

n , z)) is refutable 
in Th. 

 
 Since B(x, y) enumerates B, there is some k, such that B(  

€ 

n ,   

€ 

k ) is provable in Th. 
 
 Since A and B are disjoint, n ∉ A.  Since A(x, y) enumerates A, for every m ≤ k 

(indeed for every m), A(  

€ 

n ,   

€ 

m ) is refutable and ¬A(  

€ 

n ,   

€ 

m ) is provable.   
 
 Reasoning as above (using Ω4), (z ≤   

€ 

k  → ¬A(  

€ 

n , z)) is provable in Th.  So by 
Generalization, (∀z ≤   

€ 

k )¬A(  

€ 

n , z) is provable in Th.   
 
 So (B(  

€ 

n ,   

€ 

k ) ∧ (∀z ≤   

€ 

k )¬A(  

€ 

n , z)) is provable in Th. 
 
 So ¬(B(  

€ 

n ,   

€ 

k ) → ¬(∀z ≤   

€ 

k )¬A(  

€ 

n , y)) is provable in Th.   
 
 But this is ¬(B(  

€ 

n ,  

€ 

k ) → (∃z ≤   

€ 

k )A(  

€ 

n , z)).  So (B(  

€ 

n ,  

€ 

k ) → (∃z ≤   

€ 

k )A(  

€ 

n , z)) is 
refutable in Th.   

 
 So ∀y(B(  

€ 

n , y) → (∃z ≤ y)A(  

€ 

n , z)) is refutable in Th. 
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The Definability Theorem 
 
Lastly, we have to observe that if any two disjoint Σ1 relations are separable in Th, then 
all recursive relations are definable in Th. 
 
Suppose that any two distinct Σ1 relations are separable in Th, and let R be a recursive 
relation.  Since R is recursive, both R and 

€ 

˜ R  are Σ1.  Obviously, R and 

€ 

˜ R  are disjoint.  So 
R and 

€ 

˜ R  are separable in Th, i.e., there is a formula F(v1, v2, ..., vm) that separates 
relation R from relation 

€ 

˜ R  in a theory Th, which means: 
 
(1) If 〈n1, …, nm〉 ∈ R, then F(  

€ 

n 1,…,   

€ 

n m) is provable in Th. 
(2) If 〈n1, …, nm〉 ∈ 

€ 

˜ R , then F(  

€ 

n 1,…,   

€ 

n m) is refutable in Th. 
 

(2) can be rewritten thus: 
 

(2ʹ′) If 〈n1, …, nm〉 ∉ R, then F(  

€ 

n 1,…,   

€ 

n m) is refutable in Th. 
 
So, by definition of definability, R is definable in Th.   
 
 
This completes the proofs of the four theorems that we needed to prove in order to prove 
that all recursive relations are definable in R. 
 
 
The definability of recursive functions 
 
There is one more task I wish to complete in this lesson, and that is to show that recursive 
functions are strongly definable in R.  (Recall that that involves a third condition, (3), 
above.) 
 
Theorem 2:  All recursive functions are strongly definable in R.   
 
Proof:  For simplicity, we confine our attention to functions of one argument.   
 
Suppose that fun is a recursive function of one argument.  Since all recursive relations are 
definable in R (Theorem 1), there is a formula F(x, y) that defines the relation fun(x) = y.  
This means that: 
 

(i)  If fun(n) = m, then F(  

€ 

n ,   

€ 

m ) is provable in R. 
(ii)  If fun(n) ≠ m, then F(  

€ 

n ,   

€ 

m ) is refutable in R. 



L9: Definability  Page 125 

 
 

 

 
Let G(x, y) abbreviate the formula (F(x, y) ∧ ∀z(F(x, z) → y ≤ z)).  We will show that 
G(x, y) strongly defines fun, i.e., that: 
 

(1)  If fun(n) = m, then G(  

€ 

n ,   

€ 

m ) is provable in R. 
(2)  If fun(n) ≠ k, then G(  

€ 

n ,  

€ 

k ) is refutable in R. 
(3)  If fun(n) = m, then the sentence, 

∀v(G(  

€ 

n , v) → v =   

€ 

m ) 
 is provable in R. 

 
Suppose fun(n) = m .   
 
(1) If k < m, then, by (ii), F(  

€ 

n ,   

€ 

k ) is refutable in R; so (F(  

€ 

n ,   

€ 

k ) →   

€ 

m  ≤   

€ 

k ) is provable 
in R, and (z =   

€ 

k  → (F(  

€ 

n , z) →   

€ 

m  ≤ z)) is provable.  For instance, if 0 < m, then 
(F(  

€ 

n , 0) →   

€ 

m  ≤ 0) is provable, and  (z = 0 → (F(  

€ 

n , z) →   

€ 

m  ≤ z)) is provable. 
 
 If k = m, then   

€ 

m  and   

€ 

k  are the same numeral, so that   

€ 

m  =   

€ 

k  is provable and, by Ω4, 
  

€ 

m  ≤   

€ 

k  is provable; so (F(  

€ 

n ,   

€ 

k ) →   

€ 

m  ≤   

€ 

k ) is provable, and (z =   

€ 

m  → (F(  

€ 

n , z) → 
  

€ 

m  ≤ z)) is provable. 
 
 So each of (z = 0 → (F(  

€ 

n , z) →   

€ 

m  ≤ z)), (z = 0ʹ′ → (F(  

€ 

n , z) →   

€ 

m  ≤ z)), …,  
 (z =   

€ 

m  → (F(  

€ 

n , z) →   

€ 

m  ≤ z)) is provable.    
 So ((z = 0 ∨ z = 0ʹ′ ∨ … ∨ z =   

€ 

m ) → (F(  

€ 

n , z) →   

€ 

m  ≤ z)) is provable.   
  
 By Proposition 1, (z ≤   

€ 

m  → (z = 0 ∨ z = 0ʹ′ ∨ … ∨ z =   

€ 

m )) is provable.   
 
 So (z ≤   

€ 

m  → (F(  

€ 

n , z) →   

€ 

m  ≤ z)) is provable.   
 
 (  

€ 

m  ≤ z → (F(  

€ 

n , z) →   

€ 

m  ≤ z)) is provable, by propositional logic.   
 
 So, by Ω5, (F(  

€ 

n , z) →   

€ 

m  ≤ z) is provable, and by Generalization, ∀z(F(  

€ 

n , z) → 
  

€ 

m  ≤ z) is provable.   
 
 By (i), F(  

€ 

n ,   

€ 

m ) is provable in R. 
 
 So (F(  

€ 

n ,   

€ 

m ) ∧ ∀z(F(  

€ 

n , z) →   

€ 

m  ≤ z)), i.e., G(  

€ 

n ,   

€ 

m ) is provable in R. 
 
(2) Suppose k ≠ m.  Then, by (ii), F(  

€ 

n ,   

€ 

k ) is refutable in R.   
 So (F(  

€ 

n ,  

€ 

k ) ∧ ∀z(F(  

€ 

n , z) →   

€ 

k  ≤ z)), i.e., G(  

€ 

n ,  

€ 

k ) is refutable in R. 
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(3)  To show that ∀v(G(  

€ 

n , v) → v =   

€ 

m ) is provable, we will show: 
 

(a) (G(  

€ 

n , v) → v ≤   

€ 

m ) is provable, and 
(b) (v ≤   

€ 

m  → (G(  

€ 

n , v) → v =   

€ 

m )) is provable. 
 
From (a) and (b), we derive, by propositional logic, (G(  

€ 

n , v) → v =   

€ 

m ), from 
which we obtain ∀v(G(  

€ 

n , v) → v =   

€ 

m ) by Generalization. 
 
(a) Since G(  

€ 

n , v) is (F(  

€ 

n , v) ∧ ∀z(F(  

€ 

n , z) → v ≤ z)), 
 (G(  

€ 

n , v) → ∀z(F(  

€ 

n , z) → v ≤ z)) is provable. 
 So (G(  

€ 

n , v) → (F(  

€ 

n ,   

€ 

m ) → v ≤   

€ 

m )) is provable.   
 By (i), (F(  

€ 

n ,  

€ 

m ) is provable. 
 So (G(  

€ 

n , v) → v ≤   

€ 

m ) is provable. 
 
(b) If k < m, then by (2), G(  

€ 

n ,  

€ 

k ) is refutable; so (G(  

€ 

n ,  

€ 

k ) →   

€ 

k  =   

€ 

m ) is provable.  
 If k  = m, then   

€ 

k  =   

€ 

m  is provable; so (G(  

€ 

n ,  

€ 

k ) →   

€ 

k  =   

€ 

m ) is provable. 
 So, by reasoning in the by-now-familiar way (see (1) in the proof of this 

theorem), (v ≤   

€ 

m  → (G(  

€ 

n ,v) → v =   

€ 

m )) is provable.  
 

End of proof 



Lesson 10:  The Upper Diagonal Lemma and Some 
Consequences 
 
Our objective is to prove another diagonal lemma.  This other diagonal lemma will be of 
use in proving that no consistent extension of R is decidable.  That in turn will lead fairly 
directly to a strong form of Gödel’s First Incompleteness Theorem and to the 
Undecidability of First-order Logic. 
 
 
The strong definability of the diagonal function 
 
Proposition 1:  For any n-ary function fun, if the relation fun(x1, x2, …, xn) = xn+1 is Σ1, 
then fun is recursive (by which I mean that fun is recursive in the sense of “recursive” 
that we defined for functions in Lesson 6).  (Recall that “recursive” is short for 
“recursively decidable”.) 
 

Proof:  Suppose fun(x1, x2, …, xn) = xn+1 is Σ1.  And suppose F(x1, x2, …, xn, xn+1)  is 
a Σ1-formula that expresses it.  Then the complement of this relation, viz., the relation 
fun(x1, x2, …, xn) ≠ xn+1, is Σ1 too, because it can be expressed with the following Σ-
formula: 
 

∃y(F(x1, x2, …, xn, y) ∧ y ≠ xn+1) 
 
 
Say that En is the expression for which n is the Gödel number.  So, recall, diag(n) = m if 
and only if m is the code of ∀v(v =   

€ 

n  → En). 
 
Recall that in Lesson 7, we found that diag is arithmetic.  In fact, inspection of the 
formula that expresses it shows that it is Σ1.  (We cannot find a Σ0-formula that expresses 
it, because we do not have a Σ0-formula that expresses exponentiation.) 
 
Refer back to Lesson 9 for the definition of strongly definable function.   
 
Theorem:   The diagonal function diag is strongly definable in R.  
 

Proof:  As we have seen, diag is Σ1.  So by the above proposition, it is recursive.  So 
by Theorem 2 of Lesson 9, it is strongly definable in R. 
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The upper diagonal lemma 
 
Before proving our new diagonal lemma, we must prove the following proposition: 
 
Proposition 2:  If a one-place function fun is strongly definable in a theory Th, then for 
any formula F(v) (in the language of the theory) there is a formula H(v) such that for any 
number n, if fun(n) = m, then the following sentence is provable in Th: 
 

(H(  

€ 

n ) ↔ F(  

€ 

m )) 
 
Proof:  Suppose K(v, w) strongly defines fun in Th. We show that if fun(n) = m, 
 

(∃w(K(  

€ 

n , w) ∧ F(w)) ↔ F(  

€ 

m )) 
 

is provable in Th. 
 
Suppose fun(n) = m. 
 
1. Since K(v, w) strongly defines fun, K(  

€ 

n ,   

€ 

m ) is provable in Th.  So 
(F(  

€ 

m ) → (K(  

€ 

n ,   

€ 

m ) ∧ F(  

€ 

m )) is provable; so (F(  

€ 

m ) → ∃w(K(  

€ 

n , w) ∧ F(w)) is 
provable. 

 
2. Since K(v, w) strongly defines fun, ∀v(K(  

€ 

n , v) → v =   

€ 

m ) is provable in Th.  
Therefore, ∀v((K(  

€ 

n , v) ∧ F(v)) → (v =   

€ 

m  ∧ F(v)) is provable; so ∀v((K(  

€ 

n , v) ∧ 
F(v)) → F(  

€ 

m )) is provable; so (∃w(K(  

€ 

n , w) ∧ F(w)) → F(  

€ 

m )) is provable. 
 
End of proof 
 
 

Definition:  Where X is an expression (of the language of arithmetic), let   

€ 

X  be the 
numeral denoting #(X), the Gödel number of X. 
 
Definition:  A sentence G is a fixed point of a formula F(v) in a theory Th if and only if 
the sentence (G ↔ F(  

€ 

G )) is provable in Th.   
 
Definition:  We say that one theory Th1 is an extension of another theory Th2 if and only 
if all of the theorems of Th2 are also theorems of Th1, i.e., Con(Th2) ⊆ Con(Th1).  
(Unless otherwise noted, we assume that an extension of a theory is in the same language 
as the theory.) 
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The Upper Diagonal Lemma:  Every formula F(v) of LA has a fixed point in any 
consistent extension Th of R.   
 

Proof:  Let F(v) be a formula in LA, and let Th be a consistent extension of R.  Since 
diag is strongly definable in R, and hence in Th, we know by Proposition 2 that there 
is a formula H(v) such that for any number n, if diag(n) = m, then the following 
sentence is provable in Th: 
 

(H(  

€ 

n ) ↔ F(  

€ 

m )) 
 
Let h be the code of H(v), and suppose diag(h) = k.  So: 
 

(H(  

€ 

h ) ↔ F(  

€ 

k )) 
 
is provable in Th.  So 
 

(∀v(v =   

€ 

h  → H(v)) ↔ F(  

€ 

k )) 
 
is provable in Th.  But k is the code of ∀v(v =   

€ 

h  → H(v)).  So ∀v(v =   

€ 

h  → H(v)) is 
a fixed point for F(v).   

 
Compare this result to the Lower Diagonal Lemma in Lesson 7.  Here, rather than 
showing merely that diag is arithmetic, we show that, since diag is Σ1, it is strongly 
definable in R.  And instead of proving that the Gödel sentence for a set is true if and 
only if its code belongs to the set, we prove that the fixed point (a Gödel sentence) is 
provably (in Th) materially equivalent to the sentence that says that its code satisfies 
F(v).   
 
The Upper Diagonal Lemma is not a consequence of the Lower Diagonal Lemma, since 
the Lower Diagonal Lemma does not deal with arbitrary consistent extensions of R.   
 
But the Lower Diagonal Lemma is a consequence of the Upper Diagonal Lemma:  
Suppose A is arithmetic and F(v) expresses A.  Since N (the set of truths of arithmetic) is 
an extension of R, by the Upper Diagonal Lemma, there is a sentence G such that 
(G ↔ F(  

€ 

G )) is provable in N and, hence true, so that G is true if and only if F(  

€ 

G ) is 
true.  But F(  

€ 

G ) is true if and only if #(G) ∈ A.  So G is true if and only if #(G) ∈ A. 
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The undecidability of consistent extensions of R. 
 
Recall that if F is any formula, then #(F) is the Gödel number (code) of F. 
 
Lemma:  If Th is a consistent extension of R, then the set of codes of formulas provable 
in Th is not definable in Th.   
 

Proof:   Suppose Th is a consistent extension of R.  Let P be the set of codes of 
formulas provable in Th, and suppose, for a reductio, that P is definable in Th.  
Suppose that H(v) defines P in Th.  So: 
 

If n ∈ P, then H(  

€ 

n ) is provable in Th. 
If n ∉ P, then H(  

€ 

n ) is refutable in Th, i.e., ¬H(  

€ 

n ) is provable in Th. 
 

By the Upper Diagonal Lemma, there is a fixed point for ¬H(v), i.e., a sentence G 
such that  
 

(G ↔ ¬H(  

€ 

G )) 
 

is provable in Th.  We show both that G is provable and not provable (in Th).   
 
G is not provable:  Suppose, for a reductio, that G is provable.  Then #(G) ∈ P.  So 
H(  

€ 

G ) is provable.  So by the provability of the above biconditional, ¬G is provable.  
So, since Th is consistent, G is not provable. 
 
G is provable:  Suppose, for a reductio, that G is not provable.  Then #(G) ∉ P.  So 
¬H(  

€ 

G ) is provable.  So by the provability of the above biconditional, G is provable.   
 
Contradiction! 

 
 
Theorem (the undecidability of consistent extensions of R):  If Th is a consistent extension 
of R, then the set of codes of theorems of Th is not recursive (so that, by Church’s thesis, 
the set of theorems of Th is not decidable). 
 

Proof:  Suppose that Th is a consistent extension of R.  By the above Lemma, the set 
of codes of theorems of Th is not definable in Th.  But Theorem 1 of Lesson 9 states 
that all recursive relations are definable in R.  So all recursive relations are definable 
in any extension of R.  So the set of codes of theorems of Th is not recursive.    
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Note:  We call this result the “undecidability of consistent extensions of R”, although 
strictly speaking what is undecidable is not the set Th but the set Con(Th).  In general, we 
will say that a theory is undecidable when what we mean is that the set of theorems of the 
theory is undecidable.  (As I said at the beginning of Lesson 8, some people reserve the 
term “theory” for sets of sentences closed under first-order consequence.)  Later, we will 
say that first-order logic is undecidable when what we mean is that set of theorems of QL 
is undecidable. 
 
 
Advisement:  Nothing in subsequent lessons will depend on any of the rest of this lesson.  
The rest of this lesson is here for its intrinsic interest. 
 
Tarski Undefinability Revisited: 
 
I pause now to prove a second version of the Tarski Undefinability Theorem.  We will 
have no further use for this, but it is the form of the theorem that one usually encounters 
in the literature (e.g., the literature on the liar paradox).   
 
Definition:  Say that T(v) is a truth-predicate for a theory Th if and only if for every 
sentence S, the sentence (S ↔ T(  

€ 

S )) is provable in Th.   
 
Tarski’s Undefinability Theorem (upper version):  If Th is any consistent extension of R, 
then there is no truth-predicate for Th.    
 

Proof:  Suppose, for a reductio, that T(v) is a truth-predicate for Th, a formally 
consistent extension of R.  By the Upper Diagonal Lemma, ¬T(v) has a fixed point, 
call it G.  So (G ↔ ¬T(  

€ 

G )) is provable in Th.  But since T(v) is a truth predicate, (G 
↔ T(  

€ 

G )) is provable in Th.  So T(  

€ 

G ) ↔ ¬T(  

€ 

G ) is provable in Th.  So Th is 
formally inconsistent, contrary to assumption. 

 
Corollary:  There is no truth predicate for N, the set of truths of arithmetic.   
 

Proof:  N is a consistent extension of R. 
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The decidability of effectively enumerable, complete theories: If Th is complete and the 
set of codes of theorems of Th is recursively enumerable, then the set of codes of 
theorems of Th is recursive. 
 
Recall that by a complete theory, we mean a theory such that for every sentence P (in the 
language of the theory), either P or ¬P is a theorem.   
 
Nota bene:  We do not say that in a complete theory every formula or its negation is a 
theorem.  However, if a theory is complete, then for every formula F, if ∀v1…∀nF is a 
sentence, then either ∀v1…∀nF or ¬∀v1…∀nF is a theorem. 
 
We show that if a theory is complete, and the set of codes of theorems is recursively 
enumerable (i.e., Σ1), then the set of codes of theorems is recursive (i.e., recursively 
decidable).  By Church’s thesis, it follows that if a theory is complete and its theorems 
are effectively enumerable, then the set of theorems is decidable.   
 
Suppose that Th is complete and P, the set of codes of theorems of Th, is Σ1.  To obtain 
our result, all we have to do is show that 

€ 

˜ P  is Σ1.  (

€ 

˜ P  includes numbers that are codes of 
expressions that are not even formulas, as well as codes of formulas that are not 
theorems.) 
 
Case 1:  Th is inconsistent. 

€ 

˜ P  is the empty set and therefore Σ1. 
 
Case 2:  Th is consistent.   
 

Say that a formula P is the opposite of a formula Q if and only if either Q = ¬P or P 
= ¬Q.  Say that a sentence P is a universal closure of a formula Q if and only if:  if 
v1, …, vn are the variables in Q, then P = ∀v1…∀vnQ.  (For simplicity, we do not 
assume that all of v1, …, vn are free in Q.  So some of the quantifiers in the universal 
closure may be vacuous.) I take for granted that the following relations are Σ1:   
 

x is a code of an opposite of the formula of which y is the code 
x is a code of a universal closure of the formula of which y is the code 

 
Let us abbreviate the Σ1 formulas that express these relations as Opp(x, y) and 
UC(x, y), respectively.   
 
Recall from the end of Lesson 8 that the set of codes that are not codes of well-
formed formulas is Σ1.  Let NonForm(x) abbreviate the Σ1-formula that expresses 
that set. 
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Since the set of codes of theorems of Th is recursively enumerable, there is a Σ1 
formula Prov(v) that expresses it.  Since Th is consistent and complete, the following 
is a Σ-formula that expresses the set of codes of nonformulas and unprovable 
formulas, 

€ 

˜ P . 
 

(NonForm(x) ∨ ∃y(Prov(y) ∧ (Opp(x, y) ∨ ∃z(UC(z, x) ∧ Opp(y, z)))) 
 

For example, if F(v) is not provable, then either its opposite is provable or ¬∀vF(v) 
is provable.   

 
Reasoning informally, the truth of this theorem should be clear.  If Th is a complete 
theory and its theorems are enumerable, then it is decidable whether any formula is a 
theorem of Th, because for every formula, either it or its negation or the negation of its 
universal closure is bound to show up in the enumeration (and if the negation of the 
universal closure of F shows up, and the theory is consistent, then we know that F is not 
going to show up). 
 
In Lesson 8, we defined the concept of a correctly axiomatizable theory.  We are not 
concerned with correctness (truth) any more.  So we will say that a theory is 
axiomatizable if and only if there is a decidable set of formulas A such that all of the 
members of the set are consequences of A. 
 
Gödel’s First Incompleteness Theorem (fourth formulation):  No consistent, complete 
extension of R is axiomatizable.   
 

Proof:  Suppose, for a reductio, that Th is a consistent, complete, axiomatizable 
extension of R.  By analogy with the arithmetization of proof in P.A. in Lesson 8, the 
set of codes of theorems of Th is Σ1.  By the decidability of effectively enumerable, 
complete theories, the set codes of theorems of Th is recursive.  By the undecidability 
of consistent extensions of R, the set of codes of theorems of Th is not recursive.  
Contradiction! 
 

This of course entails that N is not axiomatizable (and thus not correctly axiomatizable, 
our third formulation, in Lesson 8), because N is a consistent, complete extension of R. 
 
The virtue of this fourth formulation and its proof, in comparison with our earlier proofs, 
is that we did not have to assume that R is true, only that it is consistent.  And R is a very 
weak theory.  (Just look at it!) 
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Lesson 11:  The Undecidability of First-order Logic 
 
Another theory that will be of use to us is the theory called simply Q.  Q is just the first 
nine axioms of P.A. (so, P.A. minus the induction scheme), which I repeat here for 
convenience:  
 
N1: (xʹ′ = yʹ′ → x = y) 
N2: ¬0 = xʹ′ 
N3: (x + 0) = x 
N4: (x + yʹ′) = (x + y)ʹ′ 
N5: (x • 0) = 0 
N6: (x • yʹ′) = ((x • y) + x) 
N7: (x ≤ 0 ↔ x = 0) 
N8: (x ≤ yʹ′ ↔ (x ≤ y ∨ x = yʹ′)) 
N9: (x ≤ y ∨ y ≤ x) 
 
Let A be the universal closure of the conjunction of these nine formulas  And suppose, 
for a reductio, that first-order logic is decidable (i.e., it is decidable whether any given 
formula is a theorem of QL, which means, by soundness and completeness, that it is also 
decidable whether any given formula is first-order valid).  Then, assuming that the 
language of QL contains LA, for any formula S of LA, it is decidable whether (A → S) is 
a theorem of first-order logic.  But (A → S) is a theorem of first order logic if and only if 
S is a theorem of Q.  So Q is decidable.  But we already know that any consistent 
extension of R is undecidable.  So suppose we can show that Q is a consistent extension 
of R  Then Q is undecidable.  Contradiction!   
 
So if we can show that Q is a consistent extension of R, it will follow that first-order 
logic is not decidable.  So our first order of business is to show that Q is a consistent 
extension of R  We will simply assume that Q is consistent; but we need to show that Q is 
an extension of R   
 
For convenience, I also repeat the specification of the axioms of R: 
 

Ω1:  All sentences (  

€ 

m +  

€ 

n ) =   

€ 

k , where m + n = k. 
Ω2:  All sentences (  

€ 

m •  

€ 

n ) =   

€ 

k , where m × n = k. 
Ω3:  All sentences   

€ 

m  ≠   

€ 

n , where m and n are distinct numbers. 
Ω4:  For each n, v∗ ≤   

€ 

n  ↔ (v∗ = 0 ∨ v∗ = 0ʹ′ ∨ … ∨ v∗ =   

€ 

n ). 
Ω5:  For each n, v∗ ≤   

€ 

n  ∨   

€ 

n  ≤ v∗. 
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Theorem:  Q is an extension of R  That is, Con(R) ⊆ Con(Q).   
 

Proof:  We need to prove that for each of the five kinds of axioms of R each axiom of 
that kind is a theorem of Q.  That will ensure that every theorem of R is also a 
theorem of Q.   
 
Ω1:  By N3, for each m, we have (  

€ 

m  + 0) =   

€ 

m .  By N4, we have (  

€ 

m  + 0ʹ′) = (  

€ 

m  + 
0)ʹ′.  So, by substitution of identicals, we have (  

€ 

m  + 0ʹ′) =   

€ 

m ʹ′.  In other words,  
(  

€ 

m  + 1) = m+1 .  By N4, (  

€ 

m  + 0ʹ′ʹ′) = (  

€ 

m  + 0ʹ′)ʹ′. By substitution of identicals, 

(  

€ 

m  + 0ʹ′ʹ′) = m+1 ʹ′, i.e., (  

€ 

m  + 2) = m+2 .  Similarly, (  

€ 

m  + 3) = m+3 , …, 

(  

€ 

m  +   

€ 

n ) = m+n , …  This gives us every axiom of type Ω1. 
 
Ω2: By N5, we have, for each m, (  

€ 

m  • 0) = 0.  By N6, we have (  

€ 

m  • 1) = 
((  

€ 

m  • 0) +   

€ 

m ).  So, by substitution of identicals, we have (  

€ 

m  • 1) = (0 +   

€ 

m ).  
By the previous paragraph, we have (0 +   

€ 

m ) = 0+m .  So we have (  

€ 

m  • 1) = 

0+m .  So we have (  

€ 

m  • 1) = m×1 .  By N6 again, we have (  

€ 

m  • 1ʹ′) = 

((  

€ 

m  • 1) +   

€ 

m ).  So, by substitution of identicals, we have (  

€ 

m  • 1ʹ′) = ( m×1 + 

  

€ 

m ), i.e., (  

€ 

m  • 2) = (  

€ 

m  +   

€ 

m ).  By the previous paragraph, we have (  

€ 

m +  

€ 

m ) = 
m×2 .  So we have (  

€ 

m  • 2) = m×2 .  And so on, for each n, we have (  

€ 

m  •   

€ 

n ) 

= m×n .  This gives us every axiom of type Ω2.   

 
Ω3: By N1, we have, for every m and n, ( m+1  = n+1  →   

€ 

m  =   

€ 

n ).  By N2, for 

any positive n, 0 ≠   

€ 

n .  So 0+1  ≠ n+1 , i.e., 1 ≠ n+1 .  So 1+1 ≠ n+2 , i.e,  

2 ≠ n+2 , and so on.  This gives us every axiom of type Ω3. 

 
Ω4: By N7 we have, (v∗ ≤ 0 ↔ v∗ = 0).  Suppose, as an induction hypothesis, that 

(v∗ ≤   

€ 

n  ↔ (v∗ = 0 ∨ … ∨ v∗ =   

€ 

n )).  By N8, we have (v∗ ≤ n+1  ↔ (v∗ ≤   

€ 

n  

∨ v∗ = n+1 ).  From these last two formulas, we derive:  v∗ ≤ n+1  ↔ (v∗ = 0 

∨ v∗ = 0ʹ′ ∨ … ∨ v∗ = n+1 ). 
 
Ω5: These are all consequences of N9. 
 
End of proof. 
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The undecidability of first-order logic  

 
Theorem (the undecidability of first-order logic):  The set of codes of formulas of LA that 
are first-order valid is not recursive.  (And so, by Church’s thesis, the set of valid 
formulas of the language of arithmetic is not decidable.) 
 

Proof:  (For the basic idea, see above.  We now give a precise proof.) 
 
Let V be the set of codes of first-order valid formulas of LA, and let   

€ 

˜ V  be the 
complement of that set (the union of the set codes of nonformulas and the set of codes 
of nonvalid formulas).  Suppose, for a reductio that V is recursive.  So there is a Σ1-
formula Val(x) that expresses V and a Σ1-formula NonVal(x) that expresses   

€ 

˜ V .   
 
Let A be the universal closure of the conjunction of the axioms of Q (i.e., the result of 
adding ∀v∗∀v∗∗ to that conjunction), and let a be the code for A.   
 
Then we can define a Σ-formula that expresses the set of codes of formulas S such 
that (A → S) is first-order valid.  Here it is: 
 

∃y(Val(y) ∧ Concat5(2,   

€ 

a , 8, x, 3, y)). 
 

And we can define a Σ-formula that expresses the set of codes of expressions S such 
that  (A → S) is not first-order valid (either not a formula at all, or not a valid 
formula).  Here it is: 
 

∃y(NonVal(y) ∧ Concat5(2,   

€ 

a , 8, x, 3, y)). 
 

But these two formulas express the set of codes of theorems of Q and the complement 
of that set, respectively.  So by Smullyan’s Theorem, we can find Σ1-formulas that 
express the same sets.  So the set of codes of theorems of Q is recursive.   
 
But by the above theorem, Q is a consistent extension of R (since we’re assuming that 
Q is consistent).  So by the main result of Lesson 10, the set of theorems of Q is not 
recursive.  Contradiction! 
 
End of proof. 
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First note:  We have not shown that every first-order language is undecidable, i.e., that 
the set of valid sentences of any first-order language is undecidable.  We have only 
shown that the set of first-order valid sentences of LA is undecidable.  And in fact, the 
valid formulas of a first-order language containing exclusively monadic predicates is 
decidable.  (That fact requires a proof that we will not go through.)  But consider a 
language L that is similar to LA to the extent that it contains at least two dyadic predicates 
(like “=” and “≤”), and at least one one-place function symbol (like “ ʹ′ ”) and at least two 
two-place function symbols  (like “+”, “•”).  It is clear that if we had an algorithm for 
deciding whether a formula in L was first-order valid, then we would have an algorithm 
for deciding whether a formula in LA was valid, which, as we have just seen, we do not 
have.  So we may conclude that first-order validity is not decidable even in this broader 
class of languages.  Likewise, the set of first-order valid sentences of any language with a 
more extensive vocabulary will be undecidable, for it were decidable, then the first-order 
valid sentences of this “sublanguage” would be decidable. 
 
Second note:  The set of valid arguments is not decidable, for if it were then the set of 
valid arguments with finitely many premises would be decidable, and if that were 
decidable, then the set of first-order valid conditionals would be decidable, and if that 
were decidable, we could likewise show that the set of theorems of Q was decidable. 
 
Third note:  Although first-order logic is undecidable (i.e., again, the set of first-order 
valid formulas is undecidable), for any invalid argument we can demonstrate that it is 
invalid.  We do so by describing a structure in which the premises are true and the 
conclusion is not true.  First-order logic is undecidable because we have no algorithm for 
finding such counterexamples. 
 
Thought exercise:  The theorems of first-order logic (which, by, soundness and 
completeness are the first-order valid formulas) are effectively enumerable (by the 
arithmetization of proof).  So first-order logic would be decidable if we could effectively 
enumerate the set comprising nonformulas and formulas that are not valid.  We cannot do 
this, but why not?  If you were to try to find a Σ1-formula that expresses the codes of 
nonprovable formulas, where would you encounter a problem? 
 



Lesson 12:  Gödel’s Second Incompleteness Theorem 
 
What Gödel’s Second Incompleteness Theorem says is that Peano Arithmetic (P.A.) 
cannot prove its own consistency.  This result can be generalized by paying attention to 
which properties of P.A. we actually use in the proof.  Then we can say of every theory 
that has those properties that it cannot prove its own consistency.  But for simplicity, I 
will confine attention to P.A.  I am ripping this presentation pretty much straight out of 
Smullyan, pp. 106-109, but I am adding some material that I took from George Boolos, 
The Logic of Provability, Cambridge University Press, 1994. 
 
Provability predicates 
 
Recall that if X is an expression, then   

€ 

X  is the numeral denoting the code of that 
expression, #(X). 
  
Definition:  A formula P(x) is a provability predicate for a theory Th if and only if the 
following three conditions hold: 

 
P1:  If X is provable in Th, then P(  

€ 

X ) is provable in Th. 
P2:  (P( X → Y ) → (P(  

€ 

X ) → P(  

€ 

Y ))) is provable in Th. 

P3: P(  

€ 

X ) → P(  

€ 

P(X )
_______

) is provable in Th. 
 

Theorem:  If P(x) is a provability predicate for Th, then the following three facts hold: 
 

P4: If (X → Y) is provable in Th, then (P(  

€ 

X ) → P(  

€ 

Y )) is provable in Th. 
P5:  If (X → (Y → Z)) is provable in Th, then (P(  

€ 

X ) → (P(  

€ 

Y ) → P(  

€ 

Z ))) is provable 
in Th. 

P6: If (X → (P(  

€ 

X ) → Y)) is provable in Th, then (P(  

€ 

X ) → P(  

€ 

Y )) is provable in Th. 
 
Proof:   
 
P4:  Suppose (X → Y) is provable. 

By P1, P( X → Y ) is provable. 

By P2 and Modus Ponens, (P(  

€ 

X ) → P(  

€ 

Y )) is provable.   
P5: Suppose (X → (Y → Z)) is provable. 

By P4, (P(  

€ 

X ) → P( Y → Z )) is provable. 

By P2, (P( Y → Z ) → (P(  

€ 

Y ) → P(  

€ 

Z ))) is provable. 
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So, by propositional logic, (P(  

€ 

X ) → (P(  

€ 

Y ) → P(  

€ 

Z ))) is provable. 
P6: Suppose (X → (P(  

€ 

X ) → Y)) is provable. 

 By P5, (P(  

€ 

X ) → (P(  

€ 

P(X )
_______

) → P(  

€ 

Y )) is provable. 

 By P3, P(  

€ 

X ) → P(  

€ 

P(X )
_______

) is provable. 
 So, by propositional logic, (P(  

€ 

X ) → P(  

€ 

Y )) is provable. 
 
 
Theorem:  The Σ1-formula Prov(x) that expresses the set of codes of formulas provable 
in P.A. is a provability predicate for P.A.   
 
Note:  Is there a Σ1-formula that expresses the set of codes of formulas provable in P.A.?  
Yes, in Lesson 8 we showed that there is a Σ-formula that expresses the codes of 
formulas provable in P.A, which means, by Smullyan’s theorem, that there is a Σ1- 
formula that expresses it.   
 

Proof:  We will prove only that condition P1 and will sketch a proof that P2 holds.  
For a sketch of a proof that P3 holds (in the context of a different system of Gödel 
numbering), see George Boolos, The Logic of Provability, op. cit.  For a detailed 
proof, one must apparently go to David Hilbert and Paul Bernays, Grundlagen der 
Mathematik, vol.1, 1934, vol. 2, 1939 (although I have never tried that myself).   
 
Since Prov(x) is Σ1, there is some Σ0-formula Pf(x, y) such that Prov(x) is ∃yPf(x, 
y). (Formerly, we said that Prov(x) was ∃y(Pf(y) ∧ x In y), but now I will abbreviate 
the latter.)  Since P.A. extends Q (by the addition of the induction axioms) and Q 
extends R.A. (Lesson 11) and R.A. is Σ0-complete (Lesson 9), P.A. proves every true 
Σ0-sentence. 
 
P1:  Suppose X is provable in P.A.  In that case Prov(  

€ 

X ) is true.  Since Prov(  

€ 

X ), i.e., 
∃yPf(  

€ 

X ,y), is true, there is some number n such that Pf(  

€ 

X ,  

€ 

n ) is true.  Since P.A. 
proves every true Σ0-sentence, Pf(  

€ 

X ,  

€ 

n ) is provable in P.A.  Therefore ∃yPf(  

€ 

X ,y), i.e, 
Prov(  

€ 

X ), is provable in P.A.   
 
P2:  In other words, we want to show that the following is provable in P.A.: 
 

(i) (∃zPf( X → Y , z) → (∃zPf(  

€ 

X , z) → ∃zPf(  

€ 

Y , z))) 

 
To see that (i) is provable, observe, first of all, that it is true.  Where   

€ 

m δ is the 
numeral that denotes the code of a proof of X → Y and n is the numeral that denotes 
the code of a proof of  X, a numeral that denotes the code of a proof of Y will be 
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€ 

m   

€ 

n   

€ 

Y δ.  (For notation, see Lesson 5).  The following Σ0-formula expresses the 
relation between the proof of X → Y, the proof of X and the proof of Y. 
 

∃m ≤ z(z = mδ ∧ o = mn  

€ 

Y δ) 
 
Abbreviate this as ConP(z, n, o).  The following sentences are provable in P.A. (we 
assume without proof): 
 

∀z∀zʹ′(Pf( X → Y , z) → ∃zʹ′ʹ′ConP(z, zʹ′, zʹ′ʹ′)) 

∀z∀zʹ′∀zʹ′ʹ′(Pf( X → Y , z) ∧ Pf(  

€ 

X , zʹ′) ∧ ConP(z, zʹ′, zʹ′ʹ′)) → Pf(  

€ 

Y , zʹ′ʹ′)). 

  
From these two sentence, it follows by logic that (i) is provable in P.A.   
 
Comment on P3:  The proof of this requires some instances of the induction scheme 
of P.A.  So we cannot get by with appealing to the Σ0-completeness of R.A., as we 
did in proving that Prov(x) satisfies P1 and P2. 
 
 

The unprovability of consistency 
 
We will assume that P.A. is consistent.  We assume that Prov(x) is the Σ1-formula that 
expresses the set of codes of theorems of P.A.   
 
Let ⊥ abbreviate some false sentence in the language of arithemetic, such as 0 = 1.  If 
P.A. is inconsistent, then every formula in the language of arithmetic is a theorem, 
including ⊥.  So if we can prove that ⊥ is not provable in P.A., then we will prove that 
P.A. is consistent.  So we can think of the statement “⊥ is not provable in P.A.” as 
asserting the consistency of P.A.  Further, since Prov(x) expresses the set of codes of 
formulas provable in P.A., if the sentence ¬Prov(

€ 

⊥ ) is provable in P.A., then P.A. can 
be said to prove its own consistency.  We will see that it does not do that. 
 
Lemma 1:  No fixed point in P.A. for ¬Prov(x) is provable in P.A. 
 

Proof:  Let G be a fixed point for ¬Prov(x).  So (G ↔ ¬Prov(  

€ 

G )) is provable in 
P.A.  Suppose, for a reductio, that G is provable in P.A.  Then, since Prov(x) is a 
provability predicate for P.A., it follows, by property P1 of provability predicates, 
that Prov(  

€ 

G ) is provable in P.A.  But since (G ↔ ¬Prov(  

€ 

G )) is provable in P.A., 
¬Prov(  

€ 

G ) is provable in P.A.  But P.A. is consistent.  Contradiction! 
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Lemma 2:  If G is a fixed point for ¬Prov(x), then (¬Prov(

€ 

⊥ ) → G) is provable in P.A.  
 

Proof:  Suppose G is a fixed point for ¬Prov(x).   
So (i) (G ↔ ¬Prov(  

€ 

G )) is provable in P.A.   
Since ⊥ is refutable in P.A., (ii) (¬Prov(  

€ 

G ) ↔ (Prov(  

€ 

G ) → ⊥)) is provable in P.A.  
By (i) and (ii), (iii) (G → (Prov(  

€ 

G ) → ⊥)) is provable in P.A.    
By (iii) and property P6 of provability predicates, (iv) (Prov(  

€ 

G ) → Prov(

€ 

⊥ )) is 
provable in P.A.   
By (iv), (¬Prov(

€ 

⊥ ) → ¬Prov(  

€ 

G )) is provable in P.A.  
By (i) and (iv), (¬Prov(

€ 

⊥ ) → G) is provable in P.A. 
 

 
Gödel’s Second Incompleteness Theorem:  The sentence ¬Prov(

€ 

⊥ ) is not provable in 
P.A.  (In other words, P.A. does not prove its own consistency.) 
 

Proof:  P.A. is a consistent extension of R.A.  So by the Upper Diagonal Lemma, 
there is a fixed point G for ¬Prov(x).  So: 
 

(G ↔ ¬Prov(  

€ 

G )) 
 

is provable in P.A.  By Lemma 2, (¬Prov(

€ 

⊥ ) → G) is provable in P.A.  But by 
Lemma 1, G is not provable in P.A.  So ¬Prov(

€ 

⊥ ) is not provable in P.A. 
 
 

Note 1:  This result does not say that we cannot prove the consistency of Peano 
Arithmetic.  All it says is that Peano Arithmetic does not prove its own consistency.  We 
can prove the consistency of Peano Arithmetic.  We specify a structure for the language 
of arithmetic and then show that all of the axioms of P.A. are true in that structure.  Of 
course, in doing this, we will have to take for granted a theory of truth for the language of 
arithmetic, and if the structure we choose is the “intended interpretation” of the language 
of arithmetic, then to show that each of the axioms is true in the structure, we will have to 
take for granted some facts about natural numbers.    
 
Note 2:  The more general statement that can be proved in the same way is that if Th is 
consistent and has a provability predicate and diag is strongly definable in Th, then Th 
does not prove its own consistency. 
 
 



Lesson 13:  Second-order Logic 
 
In second-order logic, we have variables that hold the place of predicates and function 
symbols and we can bind those variables with quantifiers.  This allows us to “say” things 
that we could not say otherwise.  The quantifiers that bind these variables are called 
second-order quantifiers.  The languages that contain second-order quantifiers are called 
second-order languages.  Second-order logic is the logic of second-order languages (a 
logic I will define below). 
 
For example, we can state Leibniz’s law, the identity of indiscernibles. 
 

∀x∀y(∀F(F(x) ↔ F(y)) → x = y) 
 

For another example, instead of having infinitely many instances of the Peano induction 
scheme, we can have a single sentence — the second order Peano induction scheme — 
that says everything that is said by the formulas in that infinite collection of formulas: 
 

∀F(F(0) → (∀x(F(x) → F(xʹ′)) → ∀xF(x))) 
 
Suppose we take this sentence and replace the remaining nonlogical constants with 
appropriate variables and existentially quantify.  This gives us: 
 

(i)  ∃z∃g∀F(F(z) → (∀x(F(x) → F(g(x))) → ∀xF(x))) 
 

This sentence (as well as the second order Peano induction scheme) is true in a structure 
if and only if the the domain of that structure is countable (either finite or denumerably 
infinite).  (For proof, see the “axiom of enumerability” in Boolos and Jeffrey, chapter 18.)  
In Lesson 4, I showed you a set of sentences that can all be true only in an infinite 
domain: 
 

(ii)  ∀x¬Rxx 
(iii) ∀x∃yRxy 
(iv) ∀x∀y∀z((Rxy ∧ Ryz) → Rxz) 
 

So the set of sentences containing (i)-(iv) is satisfiable only in structures having a domain 
that is at least denumerably infinite.  
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We can even write sentences that violate the Löwenheim-Skolem Theorem.  For 
example, the negation of sentence (i) will be true only in domains having a cardinality 
greater than that of the set of natural numbers (nondenumerably infinite). 
 
Also, there seem to be ordinary sentences of English the meanings of which might best be 
expressed using second-order quantifiers.  For example: 
 

Some critics admire only one another. 
∃F((∀x(F(x) → x is a critic) ∧ ∀y(∃z(F(z) ∧ z admires y) → F(y))) 
 

Now, one question you might have right away is:  Why can’t we do the same work with 
sets?  For example, why couldn’t we express the identity of indiscernibles as follows: 
 

∀x∀y(∀s(x ∈ s ↔ y ∈ s) → x = y)  ? 
 

Well, maybe for some purposes we could do that (for example for purposes of expressing 
the sentence about critics).  But for other purposes we cannot.  Compare the following 
two sentences, one of which uses second-order quantification and the other of which uses 
set membership: 
 

(i) ∃F∃xF(x) 
(ii) ∃s∃x x ∈ s 
 

These two sentences fail to be equivalent.  We cannot say that they are true in exactly the 
same structures.  The reason is that “∈” is a vocabulary item that can be differently 
interpreted in different structures.  So while (i) is (as we will see) a second-order valid 
sentence, (ii) is not.  
 
 
Grammar 
 
Let’s suppose we have a second-order language, L2. I won’t bother to write out the 
definition of well-formed formula or sentence for L2.  I’ll assume that you can recognize 
a formula of L2 well enough by understanding that we can have variables in place of 
function symbols and predicates and have quantifiers that bind those variables.  These 
variables will be called predicate variables and function variables.  The things that we 
formerly called “predicates” will now be called predicate constants, and the things we 
formerly called “function symbols” will now be called function symbols, as before, or 
function constants.  The things that we formerly called “variables”, will now be called 
individual variables.   
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We will adopt one new notational convention.  We will put superscripts on predicate 
variables indicating their adicity.  So Fn is a variable for which we substitute n-ary 
predicates.  And fn is a variable for which we substitute functions symbols for functions 
taking n arguments. 
 
For simplicity I will go on assuming that the only logical constants are ¬, → and ∀ and 
that the other familiar logical constants are used to write abbreviations. 
 
 
Semantics 
 
As for first-order languages, a structure for a second-order language is a pair M = 〈D, Σ〉 
consisting of a domain D of objects and an assignment Σ.  Just as before, Σ assigns to 
each individual constant a member of D, to each n-ary predicate an n-ary relation on 
members of D, and to each n-ary function symbol a function of n arguments on D.   
 
But now we have to extend the concept of a variable assignment to include assignments 
to predicate and function variables.  So a variable assignment in a structure M is a 
function g such that: 
 

(i) for each individual variable v, g(v) ∈ D, and 
(ii) for each predicate variable Fn, g(Fn) is a set of n-tuples of members of D, and 
(iii) for each function variable fn, g(fn) is a function of n arguments having the set of 

n-tuples of members of D as its domain and D as its range.   
 

We assume that functions are total.  That is, each n-ary function yields a value for every 
n-tuple of members of D. 

 
We also need to have the concept of a variant of a variable assignment that allows 
variations on the assignments to predicate variables and function variables as well as 
variations on the assignments to individual variables.  Thus: 
 

g[v/o] is the variable assignment just like g except that it assigns o to v. 
g[Fn/R] is the variable assignment just like g except that it assigns the set of n-tuples 

R to Fn. 
g[fn/fun] is the variable assignment just like g except that it assigns the function of n 

arguments fun to fn. 
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In terms of g and Σ, we define a term assignment much as before.  However, we now 
need a broader definition of term.  On the first page of Lesson 5 I gave you a definition of 
term that included terms formed from function symbols.  Take that as your definition of 
individual term, but allow “f” in that definition to include function variables.  The terms 
are then such individual terms as well as predicate variables and predicate constants. 
 

Where g is a variable assignment in M and Σ is an assignment for M, and t is a term 
of L2, h is a term assignment in M if and only if for all terms t of L2, either: 
(i) t is an individual variable and h(t) = g(t), or 
(ii) t is an individual constant and h(t) =  Σ(t), or 
(iii) t is a function variable and h(t) = g(t), or 
(iv) t is a function constant and h(t) = Σ(t), or 
(iv) for some individual terms t1, t2, … tn and some function variable or constant f, 

and some function fun of n arguments, t = f(t1, t2, … tn), and h(f) = fun and h(t) 
= fun(h(t1), h(t2), …, h(tn)), or 

(v) t is a predicate variable and h(t) = g(t), or 
(vi) t is a predicate constant and h(t) =  Σ(t). 

 
Next, we define satisfaction in a structure by a variable assignment in the usual way: 
 
(i)  Where R is either a predicate variable or predicate constant and t1, t2, …, tn 

individual terms, g satisfies R(t1, t2, …, tn) in M if and only if 〈h(t1), h(t2), …, 
h(tn)〉 ∈ h(R). 

 
(ii) g satisfies a formula ¬P in M if and only if g does not satisfy P in M. 
 
(iii) g satisfies a formula (P → Q) in M if and only if either g does not satisfy P or g 

satisfies Q. 
 
(iv) g satisfies a formula ∀vP if and only if for all o ∈ D, g[v/o] satisfies P. 
 
(v) g satisfies a formula ∀fnP if and only if for all functions of n arguments fun with 

domain and range in D, g[fn/fun] satisfies P. 
 
(vi) g satisfies a formula ∀FnP if and only if for all sets of n-tuples R of members of D, 

g[Fn/R] satisfies P. 
 
Existential quantification is understood accordingly.  For instance, g satisfies a formula 
∃FnP if and only if for some set of n-tuples R of members of D, g[Fn/R] satisfies P. 
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We define truth, thus:  A formula P of L2 is true  in a structure M if and only if every 
variable assignment in M satisfies P.  (Notice that this allows a formula that is not a 
sentence to be true.) 
 
We define logical validity in the usual way:  An argument in L2 is second-order valid if 
and only if for every structure M for L2 and every variable assignment g in M, if g 
satisfies every premise in M, then g satisfies the conclusion in M as well.  If an argument 
in L2 having premises A and conclusion Q is second-order valid, we write A | =   2 Q. 
 
Similarly, we say that a set of sentences A of L2 is second-order satisfiable if and only if 
there is a structure M and a variable assignment g in M that satisfies every member of A 
in M.  
 
 
Noncompactness 
 
Recall what we mean by compactness.  We said (in Lesson 4) that first-order logic is 
compact because for every set of sentences A if every finite subset of A is first-order 
satisfiable (consistent), then A itself is first-order satisfiable.  But we find that a similar 
claim cannot be made about second-order logic.  (Here I follow the presentation in 
Enderton, p. 271.) 
 
Observe, to begin, that for every n ≥ 2, we have a first-order sentence λn which says 
“There are at least n things”.  For example, λ3 is: 
 

∃x∃y∃z(x ≠ y ∧ x ≠ z ∧ y ≠ z) 
 
If you think about it, you will see that the infinite set of sentences {λ2, λ3, λ4, …} is 
satisfiable in all and only structures having domains that are at least denumerable in 
cardinality (size).  Here is a single sentence of second-order logic that is also satisfiable 
in all and only structures having domains that are at least denumerable: 
 

∃F2[∀u∀v∀w((F2uv ∧ F2vw) → F2uw) ∧ ∀u¬F2uu ∧ ∀u∃vF2uv] 
 

What this says is that there is a relation which is transitive and irreflexive, and every 
individual stands in that relation to some (other) individual.  Here is a simpler sentence 
that also is satisfiable in all and only structures having domains that are at least 
denumerable: 
 

λ∞:  ∃f1[∀u∀v((f1(u) = f1(v)) → u = v) ∧ ∃w∀z f1(z) ≠ w] 



L13: Second-order Logic  Page 148  

 
 

 
What this says that there is a function f1 that never yields the same output for two inputs 
and yet there is one object that is not in its range (a first member of the series).  If we 
negate this sentence, the result will be a sentence, ¬λ∞, that is true only in structures 
having finite domains. Consequently, the following set of sentences is not second-order 
satisfiable: 
 

Λ = {¬λ∞, λ2, λ3, λ4, …} 
 
Consider any finite subset B of Λ.  That subset may contain ¬λ∞, but there will be some 
largest m such that the subset contains λm.  So every member of B will be true in a 
structure having a finite domain containing m or more members.  So every finite subset of 
Λ is satisfiable, but Λ is not itself satisfiable.   
 
So second-order logic is not compact.  We cannot say that for every set A of second-order 
formulas, if every finite subset is satisfiable, then A itself is satisfiable.  (When we 
discussed compactness in Lesson 4, we were thinking of satisfiability as a property of 
sets of sentences.  Now we are thinking of it as property of sets of formulas.)   
 
Recall that we had a second formulation of compactness.  We could say of first-order 
logic that for every first-order sentence Q and every set of first-order sentences A, if  
A | =   Q, then there is some finite subset B of A such that B | =   Q.   
 
We cannot say this of second-order logic.  Let A  = {λ2, λ3, λ4, …}.  Obviously, A | =   2 λ∞, 
because, as I said, A and λ∞ are both satisfiable in exactly the structures with domains that 
are at least denumerable.  But if B is a finite subset of A, then there will be a structure 
having a finite domain in which every member of B is true, and λ∞ will be false in that 
domain.   
 
 
Categoricity 
 
The Löwenheim-Skolem theorems of lesson 4 (downward and upward) show that there 
are definite limits to the extent to which a set of sentences of a first-order language can 
fix the size of the domains of the structures that satisfy it.  In second-order logic, by 
contrast, we can have theories that fix the cardinality of the domains that satisfy them, 
even when those domains are infinite.  Indeed, we can we can write theories in second 
order logic that are satisfiable only in infinite domains but which are such that any two 
structures that satisfy them are isomorphic to one another.  (See Lesson 4 for the 



L13: Second-order Logic  Page 149  

 
 

definition of isomorphism.)  When a theory has this property (all structures that satisfy it 
are isomorphic to one another), we say that it is categorical. 
 
Let   

€ 

LA
2  be the language of second-order arithetic (just like the language of arithmetic, 

except that it includes second-order variables and quantifiers).  Let second-order Peano 
arithmetic, PA2, be the conjunction of the following two sentences of   

€ 

LA
2 :  The universal 

closure of the conjunction of the nine axioms of Q (see Lesson 11), and the second-order 
induction scheme: ∀F(F(0) → (∀x(F(x) → F(xʹ′)) → ∀xF(x))). Obviously PA2 is true on 
the intended intepretation, viz., the structure having as its domain the set of natural 
numbers and which assigns zero to 0, assigns the successor function to ʹ′, assigns the 
addition function to +, and assigns the multiplication function to •.  It can be proved that 
every structure that satisfies PA2 is isomorphic to the intended interpretation.  (For a 
proof, see Boolos and Jeffrey, chapter 18, “Second-order logic,” or Shapiro, pp. 82-83.  
Actually, the proof does not even need N7-N9.) 
 
 
Axiomatizability 
 
The question to be considered next is whether second-order logic is axiomatizable.  We 
can take this question in two versions. 
 
First version:  Can we write a finite set of axiom schemata and finite inference rules such 
that all and only second-order valid arguments are provable using axioms and inference 
rules of those kinds?   
 
Let us be a little more precise.  I will assume that you know what it means to say that a 
sentence has a certain form.  I will assume that you know what it means to say that a 
subproof has a certain form.  I will say that an inference rule is any rule that tells us that 
given finitely many premises having certain forms and finitely many subproofs having 
certain forms, we may derive a conclusion having a certain form.  (An axiom scheme 
may be treated as the special case of an inference rule that says that a conclusion of a 
certain form may be derived from no premises and subproofs at all.)  Further, I will 
assume that you know what a proof is, defined in terms of such inferences rules.  For the 
definition, see Lesson 2.  (That definition pertained only to our Barwise and Etchemendy 
inference rules, but the definition can be generalized.) 
 
In these terms the question can be put this way:  Is there a set of inference rules for L2 
such that:  for every argument in L2 there is a proof in this sense of the conclusion from 
the set of premises using these rules if and only if the argument is second-order valid?  In 



L13: Second-order Logic  Page 150  

 
 

other words, can we have a set of inference rules that is sound and complete with respect 
to second-order validity? 
 
In view of the noncompactness of second-order logic, the answer to this question is 
clearly no.  Suppose, for a reductio, that the answer is yes.  Then there is a set of 
inference rules such that for any set of sentences A of L2 and any sentence Q of L2  
A | =   2 Q if and only if there is a proof of Q from A using only those inference rules; in 
symbols:  A | –   2 Q.  We show that, contrary to what we have seen in the discussion of 
compactness, if A | =   2 Q, then there is a finite subset of B of A such that B | =   2 Q.  Suppose 
A | =   2 Q.  By hypothesis, there are proofs for all second-order valid arguments; so  
A | –   2 Q.  But proofs are finite.  So at most finitely many members of A are used in 
constructing a proof of Q from A.  So there is a finite subset B of A such that B | –   2 Q.  By 
hypothesis, there are proofs only for second-order valid arguments: so B | =   2 Q.  
 
But what is the significance of the fact that there is a set of inference rules such that there 
is a proof for an argument using those inference rules if and only the argument is valid?  
From one point of view, the significance of that fact is only that if there is a such a 
decidable system of inference rules then the set of valid arguments (having finite sets of 
premises) can be effectively enumerated.  (If there is such a system of inference rules, 
then we will be able to show that the set of codes of valid arguments is Σ1.)  But in 
principle there could be ways of enumerating the valid arguments (with finite sets of 
premises) other than one that rests on there being such a decidable set of inference rules.  
So a question of greater interest is this: 
 
Second version:   Is the set of second-order valid sentences of   

€ 

LA
2  effectively 

enumerable?   
 
Suppose that Q is a sentence of   

€ 

LA
2  that is true in the intended interpretation of   

€ 

LA
2 .  Then 

Q is true in every structure for   

€ 

LA
2  that is isomorphic to the intended intepretation (see 

Lesson 4 for the idea of the proof).  So since PA2 is true on the intended interpretation 
and, as we have seen, PA2 is categorical, PA2 | =   2 Q.  Thus, every true sentence of 
arithmetic is a semantic consequence of PA2.  Given this fact, we can prove that the set of 
second-order valid sentences of   

€ 

LA
2  is not effectively enumerable.   

 
Suppose, for a reductio, that the second-order valid sentences of   

€ 

LA
2  can be effectively 

enumerated.  If Q is first-order sentence of   

€ 

LA
2 , then either Q or ¬Q is true on the 

intended interpretation.  So, by what we have just stated, either PA2 | =   2 Q or PA2 | =   2 
¬Q.  So either (PA2 → Q) or (PA2 → ¬Q) is second-order valid.  So if the set of second-
order valid sentences of   

€ 

LA
2  were effectively enumerable, either (PA2 → Q) or (PA2 → 

¬Q) would eventually show up in the enumeration.  If (PA2 → Q) shows up, then we 



L13: Second-order Logic  Page 151  

 
 

will know that Q is true.  If (PA2 → ¬Q) shows up, then we will know that Q is not true.  
So the set of first-order truths of arithmetic would be decidable.  But since the set of first-
order truths of arithmetic is not arithmetic (by Tarski’s undefinability theorem, which still 
holds), and therefore not recursive, we know, by Church’s thesis, that the set of first-
order truths of arithmetic is not decidable.  So the set of second-order valid sentences of 

  

€ 

LA
2  cannot be effectively enumerated.   Consequently, the set of second-order valid 

sentences of any other second order language at least as rich in predicate and function 
symbols as   

€ 

LA
2  either. 

 
Exercise: Suppose we have a Gödel numbering for the set of expressions of the language 
of second-order arithmetic,  

€ 

LA
2 .  We can use the formulas of the language of first-order 

arithmetic LA to express sets of these Gödel numbers.  We have also learned (though we 
did not prove it) that every member of N is a second-order consequence of PA2.  Use 
these facts to show that the set of codes of second-order valid formulas of   

€ 

LA
2  is not 

arithmetic.  Hints:  Modify the proof of the undecidability of first-order logic, Lesson 11, 
as needed.  Notice that PA2 is a particular sentence of   

€ 

LA
2  and so has a particular code.  

Recall that the set of codes of first-order truths of arithmetic is not arithmetic (by Tarski’s 
Undefinability Theorem). 



Lesson 14:  Propositional Modal Logic 
 
Modal logic is the study of the logic of necessity and possibility.  The symbol that means 
“It is necessary that…” is  (the box), and the symbol that means “It is possible that…” 
is ◊ (the diamond).  These two symbols will be called modal operators (although strictly 
speaking we should call them modal connectives).  We begin with propositional modal 
logic, which is the study of languages containing modal operators and other sentential 
connectives but no quantifiers. 
 
First, we will define a language of propositional modal logic.  Then we will define the 
conditions under which a sentence of the language is true in a modal structure.  Finally, 
we will define several different concepts of logical validity.  What we understand a 
modal operator to mean will depend on which definition of logical validity we accept.   
 
The Grammar 
 
Let the atomic sentences of PM be A, B, C, …  Say that P is a sentence of PM if and 
only if either (i) P is an atomic sentence of PM, or (ii) P = ¬Q and Q is a sentence of 
PM, or (iii) P = (Q → R) and both Q and R are sentences of PM, or (iv) P = Q and 
Q is a sentence of PM. 
 
We will treat ◊P as an abbreviation of ¬¬P. 
 
 
Truth Conditions 
 
A frame (or Kripke-frame) is a pair 〈W, R〉, where W is a nonempty set of possible 
worlds, and R is a binary relation on members of W (i.e., a set of pairs of members of W).   
 
A valuation V in a frame 〈W, R〉 is a function that takes each pair consisting of an atomic 
sentence of PM and a world in W as arguments and yields either the truth value T or the 
truth value F as output.   
 
For example, we might have a structure where W = {w1, w2, w3}, R = {〈w1, w1〉, 〈w1, w2〉, 
〈w2, w3〉, 〈w3, w1〉}, and V(A, w1) = T, V(A, w2) = F, V(A, w3) = T,….   
 
R is called an accessibility relation, and if 〈wi, wj〉 ∈ R, then we say that wj is accessible 
from wi.  We abbreviate 〈wi, wj〉 ∈ R thus:  wiRwj.   
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For emphasis:  If wiRwj, then wj is accessible from wi. 
 
We define the conditions under which sentences of PM are true at a world w on a 
valuation V in a frame 〈W, R〉 as follows: 
 
(i) If P is atomic, then P is true at w ∈ W on V in 〈W, R〉 if and only if V(P, w) = T. 
(ii) If P = ¬Q, then P is true at w ∈ W on V in 〈W, R〉 if and only if Q is not true at w ∈ 

W on V in 〈W, R〉. 
(iii) If P = (Q → R), then P is true at w ∈ W on V in 〈W, R〉 if and only if either Q is not 

true at w ∈ W on V in 〈W, R〉 or R is true at w ∈ W on V in 〈W, R〉. 
(iv) If P = Q, then P is true at w ∈ W on V in 〈W, R〉 if and only if for all wʹ′ ∈ W, if 

wRwʹ′, then Q is true at wʹ′ ∈ W on V in 〈W, R〉. 
 
A consequence is that: 
(v) If P = ◊Q, then P is true at w on V in 〈W, R〉 if and only if for some wʹ′ ∈ W, wRwʹ′, 

and Q is true at wʹ′ on V in 〈W, R〉. 
Proof:  ◊Q abbreviates ¬¬Q, and, by (2) and (4), ¬¬Q is true at w on V in 〈W, R〉 if 
and only if for some wʹ′ ∈ W, wRwʹ′, and Q is true at wʹ′ on V in 〈W, R〉. 
 
A sentence is false at a world on a valuation in a frame if and only if it is not true at that 
world on that valuation in that frame. 
 
If we suppose that one of the worlds in W is the actual world (the world that really 
exists), then we can say that A is true (simpliciter) if and only if A is true at the actual 
world. 
 
(From now on, I will just assume that the worlds we’re talking about are in W in the 
frame we’re talking about.) 
 
For example:   
 
 
 
 
 
 
 
 
 
 (Next page for explanation) 

w2 
A, B 

w1 
¬A, B 

w3 

¬A, B 

w4 
A, ¬B 
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W = {w1, w2, w3, w4}, and R is represented by the arrows.  ◊A is true at w1 in this frame, 
because A is true at w2 in this frame, and w1Rw2.  A is false at w1 in this frame, because 
A is false at w3 in this frame, and w1Rw3.  However, B is true at w1 in this frame, 
because B is true at every world w ∈ W such that w1Rw.  (B is false at w4, but it does not 
matter, since w4 is not accessible from w1.  We are not assuming – at this point – that 
accessibility is transitive.) 
 
 
Kinds of Frame 
 
Towards defining different kinds of validity, we define different kinds of frame: 
 
A frame 〈W, R〉 is reflexive if and only if for all w ∈ W, wRw.  (Every world is accessible 
from itself.) 
 
A frame 〈W, R〉 is symmetric if and only if for all w, wʹ′ ∈ W, if wRwʹ′ then wʹ′Rw.  (If wʹ′ is 
accessible from w, then w is accessible from wʹ′.) 
 
A frame 〈W, R〉 is transitive if and only if for all w, wʹ′, wʹ′ʹ′ ∈ W, if wRwʹ′ and wʹ′Rwʹ′ʹ′, then 
wRwʹ′ʹ′.  (If wʹ′ʹ′ is accessible from wʹ′ and wʹ′ is accessible from w, then wʹ′ʹ′ is accessible 
from w.) 
 
A frame is a T-frame if and only if it is reflexive. 
 
A frame is a B-frame if and only if it is reflexive and symmetric. 
 
A frame is an S4-frame if and ony if it is reflexive and transitive. 
 
A frame is an S5-frame if and only if it is reflexive, symmetric and transitive.   
 
Note:   In an S5-frame, W can be divided into mutually exclusive cells such that W is the 
union of all of the cells and such that for each cell C ⊆ W, for all w, wʹ′ ∈ C, wRwʹ′.  In 
other words, if w1, w2 ∈ W and w1Rw2, then for all w3 such that w1Rw3 and for all w4 such 
that w2Rw4, w3Rw4, and if w1, w2 ∈ W and ¬w1Rw2, then for all w3 such that w1Rw3 and 
for all w4 such that w2Rw4, ¬w3Rw4. 
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Kinds of Validity 
 
Let A be a set of sentences of PM and Q be a sentence of PM.   
 
The argument having the sentences in A as premises and the sentence Q as its conclusion 
is K-valid (A | =   K Q) if and only if for every frame 〈W, R〉 and every valuation V in 〈W, R〉 
and every world w ∈ W, if every member of A is true at w on V in 〈W, R〉, then Q is true 
at w on V in 〈W, R〉. 
 
The argument having the sentences in A as premises and the sentence Q as its conclusion 
is T-valid (A | =   T Q) if and only if for every T-frame 〈W, R〉 (reflexive) and every 
valuation V in 〈W, R〉 and every world w ∈ W, if every member of A is true at w on V in 
〈W, R〉, then Q is true at w on V in 〈W, R〉. 
 
The argument having the sentences in A as premises and the sentence Q as its conclusion 
is B-valid (A | =   B Q) if and only if for every B-frame 〈W, R〉 (reflexive and symmetric) and 
every valuation V in 〈W, R〉 and every world w ∈ W, if every member of A is true at w on 
V in 〈W, R〉, then Q is true at w on V in 〈W, R〉. 
 
The argument having the sentences in A as premises and the sentence Q as its conclusion 
is S4-valid (A | =   S4 Q) if and only if for every S4-frame 〈W, R〉 (reflexive and transitive) 
and every valuation V in 〈W, R〉 and every world w ∈ W, if every member of A is true at w 
on V in 〈W, R〉, then Q is true at w on V in 〈W, R〉. 
 
The argument having the sentences in A as premises and the sentence Q as its conclusion 
is S5-valid (A | =   S5 Q) if and only if for every S5-frame 〈W, R〉 (reflexive and symmetric 
and transitive) and every valuation V in 〈W, R〉 and every world w ∈ W, if every member 
of A is true at w on V in 〈W, R〉, then Q is true at w on V in 〈W, R〉.   
 
 
Proof theory 
 
Corresponding to each of these validity concepts, we specify a set of axioms such that all 
and only the arguments that are valid in that sense are provable using those axioms and 
Modus Ponens.   
 
At the core of each set of axioms are the axioms of PL from Lesson 5, which I repeat 
here: 
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The axiom system PL (for PM): 
 

L1:  (P → (Q → P)) 
L2:  (P → (Q → R)) → ((P → Q) → (P → R)) 
L3:  ((¬P → ¬Q) → (Q → P)) 

 
Every sentence of PM that has one of these three forms will be an axiom of PL (for 
PM).  We could just as well say:  Every tt-valid sentence of PM is an axiom, because 
for any language tt-validity is decidable.  In any case, we will assume that every tt-valid 
sentence can be derived from axioms of these three forms by means of repeated 
applications of Modus Ponens. 
 
The System K 
 
The system K adds to the axioms of PL one axiom scheme and one inference rule.  The 
axiom scheme is: 
 

L4:  ((P → Q) → (P → Q)) 
 

This is called the characteristic axiom scheme of K.  The additional inference rule is:   
 

Necessitation:  If P can be derived from axioms only (no special premises), then 
infer P.   
 

When there exists a proof of Q using only sentences in set A and axioms of any of the 
forms, L1-L4, Modus Ponens and Necessitation, we write A | –   K Q.   
 
We say that K = PL + L4  + Necessitation. 
 
As a matter of fact, A | –   K Q if and only if A | =   K Q, but we won’t prove that.  In other 
words, proof in K is sound and complete with respect to K-validity. 
 
Exercise 1:  Show that (P → Q) | =   K (P → Q).  (Hint:  Suppose that the premise is 
true at some world on some valuation in some K-frame and that the conclusion is false at 
that world on that valuation in that K-frame, and then derive a contradiction.) 
 
Exercise 2:  Show that P | =/  K P.  (So the box does not yet behave very much like a 
necessity operator.)   
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Solution:  Let W = {w1, w2}.  Suppose that R = {〈w1, w2〉}.  (Note that R is not 
reflexive.)  Suppose V(A, w1) = F, but V(A, w2) = T.  Since for every w ∈ W such that 
w1Rw (namely, w2 only) A is true at w, A is true at w1.  But A is not true at w1.   

 
 
The System T 
 
The system T adds the following axiom scheme: 
 

L5:  (P → P) 
 

This is the characteristic axiom scheme of T.  So T = K + L5. 
 
As a matter of fact, A | –   T Q if and only if A | =   T  Q, but we won’t prove that. 
 
Exercise 3:  Prove that P | =   T P.   
 

Solution:  Let 〈W, R〉 be a T-frame, and suppose that V is a valuation such that P is 
true at w on V in 〈W, R〉.  Then, by condition (iv) in the definition of truth, for every 
wʹ′ ∈ W such that wRwʹ′, P is true at wʹ′ on V in 〈W, R〉.  But since 〈W, R〉 is reflexive in 
every T-frame, wRw.  So P is true at w on V in 〈W, R〉. 

 
Exercise 4:  Prove that P | =/   T ◊P. 
 

Solution:  Suppose W = {w1, w2} and R = {〈w1, w1〉, 〈w2, w2〉, 〈w1, w2〉}.  〈W, R〉 is a T-
frame since R is reflexive. (But note that R is not symmetric.)  Suppose V(A, w1) = T 
and V(A, w2) = F.  A is true at w1 on V in 〈W, R〉.  But the only world accessible from 
w2 is w2 itself, and A is false at w2.  So ◊A is false at w2 on V in 〈W, R〉.  But w1Rw2; 
so we cannot say that for all w ∈ W, if w1Rw, then ◊A is true on V in 〈W, R〉.  So ◊A 
is not true at w1 on V in 〈W, R〉. 

 
Exercise 5:  Prove that P | =/   T P. 
 
 
The System B 
 
The system B adds to the system T the following axiom scheme: 
 

L6:  (P → ◊P) 
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This is the characteristic axiom scheme of B.  So B = T + L6.   
 
As a matter of fact, A | –   B Q if and only if A | =   B  Q, but we won’t prove that. 
 
Exercise 6:  Prove that P | =   B ◊P. 
 

Solution:  Suppose that P is true at w on V in a B-frame 〈W, R〉.  Consider an arbitrary 
world wʹ′ ∈ W such that wRwʹ′.  Since 〈W, R〉 is symmetric, wʹ′Rw.  So, since P is true 
at w, ◊P is true at wʹ′.  So for every wʹ′ ∈ W such that wRwʹ′, ◊P is true at wʹ′.  So ◊P 
is true at w. 
 

Exercise 7:  Prove that P | =/   B P. 
 

Solution:  Let W = {w1, w2, w3} and R = {〈w1, w1〉, 〈w2, w2〉, 〈w3, w3〉, 〈w1, w2〉, 〈w2, 
w1〉, 〈w2, w3〉, 〈w3, w2〉}.  So 〈W, R〉 is a B-frame, since it is reflexive and symmetric.  
(But note that 〈W, R〉 is not transitive.)  Suppose V(A, w1) = T, and V(A, w2) = T, but 
V(A, w3) = F.  Since only w1 and w2 are accessible from w1, A is true at w1.  But 
since w2Rw3 and A is not true at w3, A is not true at w2.  So since w1Rw2 and A is 
not true at w2, A is not true at w1.   
 

 
The System S4 
 
The system S4 adds to the system T the following axiom scheme: 
 

L7:  (P → P) 
 

This is the characteristic axiom scheme of S4.  So S4 = T + L7.  Notice that S4 builds on 
T, not B, and does not include L6.   
 
As a matter of fact, A | –   S4 Q if and only if A | =   S4 Q, but we won’t prove that. 
 
Exercise 8:  Prove that P | =   S4 P. 
 

Solution:  Suppose P is false at w on V in an S4-frame 〈W, R〉.  So there is a 
world wʹ′ ∈ W such that wRwʹ′ and P is false at wʹ′.  So there is a world wʹ′ʹ′ such that 
wʹ′Rwʹ′ʹ′ such that P is false at wʹ′ʹ′.  But 〈W, R〉 is transitive.  So, since wRwʹ′ and wʹ′Rwʹ′ʹ′, 
wRwʹ′ʹ′.  So P is false at w. 
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Exercise 9:  Prove that P | =/   S4 ◊P. 
 

Solution:  See the proof that P | =/   T ◊P. 
 
 
The System S5 
 
The system S5 adds to the system T both the characteristic axiom of B and the 
characteristic axiom of S4: 
 

L6:  (P → ◊P) 
L7:  (P → P) 

 
So S5 = T + L6 + L7 = B + L7 = S4 + L6. 
 
As a matter of fact, A | –   S5 Q if and only if A | =   S5 Q, but we won’t prove that. 
 
 
The Reducibility of Modalities in S5 
 
Let P = || =    Q mean:  P | =   S5 Q and Q | =   S5 P. 
 
Theorem (the reducibilities of modalities in S5): 
 
(i) ◊P = || =     ◊P 
(ii) P = || =     ◊P 
(iii) ◊P = || =     ◊◊P 
(iv) P = || =     P 
 
Before we prove this, let us contemplate what it means.  It means that whenever we have 
a sentence that begins with a string of modal operators, we can find an equivalent formula 
that begins with just the last of those operators.  For example: 
 
◊◊P = || =    ◊◊P = || =    ◊P = || =    P 
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Now the proof: 
 
(i)  R-L:  By exercise 3, Q | =   S5 Q.  So ◊P | =   S5 ◊P. 
  L-R:  Suppose that ◊P is true at w.  Then there is a world wʹ′ accessible   
  from w where P is true.  But wʹ′ is accessible from every world accessible  
  from w.  So at every world accessible from w, ◊P is true.  So ◊P is true at  
  w. 
(ii)  From (i) we have ¬◊¬Q = || =     ¬◊¬Q.  Applying the definition of ◊, this 

 gives us Q = || =     ◊Q. 
(iii) R-L: Suppose ◊◊P is true at w.  So ◊P is true at some world wʹ′ accessible from w.   
  So P is accessible from some world wʹ′ʹ′ accessible from wʹ′.  But wʹ′ʹ′ is   
  accessible from w.  So ◊P is true at w. 
 L-R: By exercise 3, ¬Q | =   S5 ¬Q.  So ¬¬Q | =   S5 ¬¬Q.  So Q | =   S5 ◊Q.  So  
  ◊P | =   S5 ◊◊P. 
(iv)  From (iii) we have ¬◊¬Q = || =     ¬◊◊¬Q.  Applying the definition of ◊, this  
  gives us P = || =     P. 
 
 
Some Objections 
 
The contemporary literature on propositional modal logic recognizes nothing the least bit 
controversial.  (As we will see, that is not the case when it comes to quantified modal 
logic.)  Although I may be the only one, I think that actually none of these logics captures 
the logic of natural language modal operators.  That is because what we really need is a 
three-valued semantics. 
 
First, let’s compare a two-valued semantics to a three-valued semantics with respect to a 
couple of points: 
 
Inconsistency and implication:  In a two-valued semantics, if P and Q are inconsistent, 
then P implies ¬Q.  If there is no valuation on which both P and Q are true, then for 
every valuation on which P is true ¬Q is true too.  But in a three-value semantics, this 
does not hold.  There might be no valuation on which P and Q are both true, and yet 
there may be a valuation on which P is true and ¬Q is neither true nor false. 
 
Contraposition:  A two-valued semantics obeys the law of contraposition:  If P implies 
Q, then ¬Q implies ¬P.  (We made tacit use of this in the proof of the reducibility of 
modalities in S5.)  But a three-value semantics need not obey this law.  Suppose P 
implies Q, because on every interpretation on which P is true, Q is true.  Then on every 
interpretation on which Q is not true, P is not true.  But every interpretation on which 
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¬Q is true is an interpretation on which Q is not true.  So every interpretation on which 
¬Q is true is an intepretation on which P is not true.  But it does not follow that every 
interpetation on which ¬Q is true is an interpretation on which ¬P is true, because P 
could fail to be true by being neither true nor false, in which case ¬P is neither true nor 
false as well.  
 
First problem case: 
 
Suppose I step outside and declare, “It’s going to rain!”  But then I look up at the sky, 
reconsider and say, “Well, it might not”.  Doesn’t this count as taking back what I said in 
the first place?  If so, there there is a kind of inconsistency between P and ◊¬P.  But in a 
two-valued logic, if P and Q are inconsistent, then P implies ¬Q.  We don’t want to say 
that P implies ¬◊¬P, because that means that P implies P, which is certainly not the 
case.  So to maintain that P and ◊¬P are inconsistent, we have to go to a three-valued 
semantics. 
 
Second problem case: 
 
If it is possible that it is possible that I will not go for a walk, then surely it is possible 
that I will not go for a walk.  But suppose that is necessary that I will go for a walk.  May 
I infer that it is necessary that it be necessary that I will go for a walk?  No!  The reason 
why it is necessary that I go for walk may be that I decided to go for a walk, and I always 
do what I have decided to do.  But it is not necessary that it be necessary that I go for a 
walk, because I did not have to decide to go for a walk.  So ◊◊¬P implies ◊¬P, but P 
does not imply P.  But since the principle of contraposition holds in a two-valued 
semantics, the only way we can have the one implication without the other is by going to 
a three-valued semantics. 
 
Third problem case: 
 
I will be in Cincinnati on Friday.  Therefore, it is necessarily possible that I will be in 
Cincinnati on Friday.  But it may be necessary that I not be in Cincinnati on Monday.  
Does it follow that I will not be in Cincinnati on Monday?  I think not.  In other words, P 
implies ◊P, but ◊¬P does not imply ¬P.  But here too, since the principle of 
contraposition holds in a two-valued semantics, the only way we can have the one 
implication without the other is by going to a three-valued semantics. 
 



Lesson 15:  Quantified Modal Logic 
 
Here’s our agenda:  First we will look at the “obvious” way of interpreting sentences 
containing both quantifiers and modal operators.  Then we will look at some reasons to 
be dissatisfied with that.  Then we will investigate two alternatives (the “free-logical” 
alternative, and the “existence predicate” alternative).  Finally, we will draw the 
distinction between rigid and non-rigid designation.  We will concern ourselves 
exclusively with questions of semantics and will not deal with proof theory (axiom 
systems) at all. 
 
Throughout we will suppose that we have a language QM, which, with respect to 
grammar, is just like a first-order language except that it contains the box, , which 
behaves, grammatically just like the negation sign.  We will dispense with function 
symbols for present purposes. 
 
 
Simple Quantified Modal Logic 
 
In Simple Quantified Modal Logic (a term I just made up), we simply add to each frame a 
set of objects, the domain.  So a frame is now a triple, 〈D, W, R〉, where D is a nonempty 
set of objects, and, as before, W is a nonempty set of worlds and R is an accessibility 
relation on the worlds in W.  For simplicity I will assume that for every frame 〈D, W, R〉, 
〈W, R〉 is an S5-frame (and therefore, reflexive, symmetic and transitive).  (This means 
that we could drop all mention of R and just assume that all worlds in W were accessible 
to one another.) 
 
We will define a modal structure as a quadruple 〈Σ, D, W, R〉, where 〈D, W, R〉 is a frame, 
as just defined, and Σ is an interpretation.  An interpretation Σ is a function of two 
arguments.  The arguments are either a world in W and an individual constant, or a 
member of W and a predicate (i.e., predicate constant).  For each w ∈ W and each 
individual constant n of QM, Σ(n, w) ∈ D, and for each w ∈ W and each n-ary predicate 
F of QM, Σ(F, w) = a set of n-tuples of members of D.  Σ(a, w) is the denotation of a at 
w, and Σ(F, w) is the extension of F at w.   
 
Furthermore, we stipulate that for each individual constant n and for all w, wʹ′  ∈ W,  
Σ(n, w) = Σ(n, wʹ′).  (So it might have been simpler to have two kinds of interpretation, 
one for individual constants, which did not take worlds as arguments at all, and one for 
predicates which did take worlds as arguments.)  This is what it means to say that an 
individual constant is a rigid designator:  It denotes the same object at every world.  
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Note an ambiguity in the phrase “denotes at a world”.  What we really mean here is 
denotes relative to a world.  There is a possible world in which “Barack Obama” is the 
name of Sarah Palin.  We could say that in that world “Barack Obama” denotes Sarah 
Palin.  But that’s not the kind of thing we mean here when we speak of a name as 
denoting something at a world.  In English, as it is spoken in the actual world, “Barack 
Obama” denotes Barack Obama, not Sarah Palin, relative to, or “at”, every world. 
 
Similarly, we relativize variable assignments (in structures) to worlds.  A function g is a 
variable assignment in a structure 〈Σ, D, W, R〉 if and only if for each variable v and 
world w ∈ W, g(v, w) ∈ D.  We stipulate that for all w, wʹ′ ∈ W, g(v, w) = g(v, wʹ′)  The 
variant g[v/o] of variable assignment g is the variable assignment just like g except that 
for each w ∈ W, g[v/o](v, w) = o.   
 
Term assignments are defined in terms of variable assignments and interpretations. 
Where t is a term and g is some variable assignment in 〈Σ, D, W, R〉, 
 
  Σ(t, w) if t is an individual constant. 
    h(t, w) =  
  g(t, w) if t is a variable. 
 

 
h is a term assignment for 〈Σ, D, W, R〉 and g. 
 
Next, we define satisfaction of a formula by a variable assignment in a modal structure: 
 
For every formula P and every structure 〈Σ, D, W, R〉 and every world w ∈ W, and every 
variable assignment g in 〈Σ, D, W, R〉, g satisfies P in 〈Σ, D, W, R〉 at w if and only if: 
 
(A) P = R(t1, t2, …, tn), where R is an n-ary predicate and t1, t2, …, tn are n terms, and 

〈h(t1, w), h(t2, w), …, h(tn, w)〉 ∈ Σ(R, w), or, 
 
(¬) P = ¬Q and g does not satisfy Q in 〈Σ, D, W, R〉 at w, or 
 
(→) P = (Q → R) and either g does not satisfy Q in 〈Σ, D, W, R〉 at w or g satisfies R in 

〈Σ, D, W, R〉 at w, or 
 
(∀) P = ∀vQ and for all o ∈ D, g[v/o] satisfies Q in 〈Σ, D, W, R〉 at w, or 
 
()  P = Q and for all wʹ′ ∈ W, if wRwʹ′ then g satisfies Q in 〈Σ, D, W, R〉 at wʹ′. 
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We say that a sentence P of QM is true in 〈Σ, D, W, R〉 at w if and only if for every 
variable assignment g in 〈Σ, D, W, R〉 at w, g satisfies P in 〈Σ, D, W, R〉 at w. 
 
If A is a set of sentences of QM and Q is a sentence of QM, then A | =   SQML Q if and only 
if for every modal structure 〈Σ, D, W, R〉 and every w ∈ W, if every member of A is true 
in 〈Σ, D, W, R〉 at w, then Q is true in 〈Σ, D, W, R〉 at w. 
 
 
 The Barcan and Converse Barcan Formulas: 
 
The problem with this shotgun wedding of quantifier domains and relativization of truth 
to worlds is that the Barcan and converse Barcan formulas turn out to be valid.  (The 
validity of the Barcan formula was first discussed in the 1940’s by Ruth Barcan Marcus.) 
 

The Barcan formula: 
| =   SQML (∀vQ → ∀vQ) 
 
The Barcan formula (existential variant): 
| =   SQML (◊∃vQ → ∃v◊Q) 
 
The converse Barcan formula: 
| =   SQML (∀vQ → ∀vQ) 
 
The converse Barcan formula (existential variant): 
| =   SQML (∃v◊Q → ◊∃vQ) 
 
Proof of the Barcan Formula:  Suppose ∀vQ is true at w.  Then for every variable 
assignment g and every object o ∈ D, g[v/o] satisfies Q at w.  So for every variable 
assignment g and every object o ∈ D, for every world wʹ′ ∈ W such that wRwʹ′, g[v/o] 
satisfies Q at wʹ′.  So for every variable assignment g, for every wʹ′  ∈ W such that 
wRwʹ′, for every object o ∈ D, g[v/o] satisfies Q at wʹ′.  So for every variable 
assignment g, for all wʹ′ ∈ W such that wRwʹ′, g satisfies ∀vQ at wʹ′.  So for every 
variable assignment g, g satisfies ∀vQ at w.  So ∀vQ is true at w. 
 
Proof of the Converse Barcan Formula:  Similar. 

 
The essential point in both of these proofs is that the domain of objects that we have to 
“look at” in evaluating a quantified formula is entirely independent of the domain of 
worlds that we have to look at in evaluating a boxed formula.  So we can reverse the 
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order of our metalinguistic quantifiers in formulating the satisfaction conditions of a 
universally quantified boxed formula or a boxed universally quantified formula. 
 
This does not mean that the order of any series of modal operators and quantifiers can be 
switched around.  For example, we have: 
 

| =/   SQML (∃vQ → ∃vQ) 
 

Proof:  Suppose W = {w, wʹ′}, D = {a, b}, Σ(F, w) = {〈a〉}, Σ(F, wʹ′) = {〈b〉}.  Let g be 
some variable assignment in this structure.  g[x/a] satisfies Fx at w.  So g satisfies 
∃xFx at w.  g[x/b] satisfies Fx at wʹ′.  So g satisfies ∃xFx at wʹ′.  So g satisfies ∃xFx 
at w.  But g[x/a] does not satisfy Fx at wʹ′; so g[x/a] does not satisfy Fx at w.  And 
g[x/b] does not satisfy Fx at w; so g[x/b] does not satisfy Fx at w.  So g does not 
satisfy ∃xFx at w.  So g does not satisfy (∃xFx → ∃xFx) at w.  So (∃xFx → 
∃xFx) is not true at w.   
 

To see that this is a right result consider the following conditional:  “If necessarily there 
is some number that is the number of planets, then there is some number that is 
necessarily the number of planets.”  Or:  “If necessarily something exists, then there is 
something that necessarily exists”.   
 
Counterexamples to the Barcan formula:  Suppose that everything that actually exists has 
(rest) mass.  It is plausible that each of those things necessarily has mass, because for 
anything that has mass in fact, it just would not be recognizable as the same thing if it did 
not have mass.  So everything necessarily has mass.  But even in that case there there 
could be a possible world in which massless things exist.  So it is not the case that 
necessarily everything has mass.   
 
Or consider the Barcan formula in its existential variant.  I do not have a twin brother.  
But my having a twin brother is a possibility.  That is, there is a possible world in which I 
have a twin brother.  So “It is possible that I have a twin brother” is true.  But it does not 
follow that there is someone now, someone out there, maybe somewhere in France, of 
whom we can say:  It is possible that he is my twin brother.  So, “There is someone who 
is possibly my twin brother” is false.  (Admittedly, the premise sounds a little odd, at 
least if we assume that I know that I do not have a twin brother.  But suppose I don’t 
know this.  Perhaps I suspect that I might have a twin brother because once, when I was 
very young, I heard my mother and father saying some things that I did not exactly 
understand.) 
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Counterexamples to the Converse Barcan Formula:  In each possible world, it is true that 
everything is something:  ∀x∃y x = y.  Since this is true at each world, we seem to have 
it that the following is true at our world: ∀x∃y x = y.  But now look at that couch.  
That couch does not exist in every possible world, does it?  I hope not!  So we cannot say 
that in each possible world it is something.  So the following sentence is false:  
∀x∃y x = y.   
 
 
Modal Free Logic 
 
Some people say that what has gone wrong is that in SQML we have assumed that the 
domain of objects relative to which we evaluate quantified sentences is the same for 
every world.  In other words, we have assumed that for each world the objects “in” that 
world are the same as the objects “in” every other world.  What I am calling Modal Free 
Logic (MFL) remedies that purported error.  The term “Free-logic” actually refers to a 
kind of semantics and matching proof theory in which we allow individual constants that 
do not denote anything.  (The main exponents of this have been Karel Lambert and 
Ermanno Bencivenga.)  We will not allow denotationless terms, but we have to modify 
Universal Elimination and Existential Introduction in ways that are similar to the way 
they are modified in Free Logic; hence the name. 
 
In Modal Free Logic, a structure is a quintuple 〈Σ, δ, D, W, R〉, where Σ, D, W, and R are 
as before.  δ is a function on members of W that yields, for each member of W, a subset 
of D.  So for each w ∈ W, δ(w) ⊆ D.  We think of  δ(w) as the set of things that “exist” at 
w.  We call D the outer domain (of the structure 〈Σ, δ, D, W, R〉) and we call δ(w) the 
inner domain for w (in 〈Σ, δ, D, W, R〉).  So Chris Gauker is in the inner domain for the 
actual world, and Sherlock Holmes may be in the outer domain, but he is not in the inner 
domain for the actual world.   
 
(Or so they say.  I myself don’t understand what sense it makes to say that Sherlock 
Holmes—that very person—inhabits some possible world.  “What person?”, you may 
rightly ask.  “There is no Sherlock Holmes!”) 
 
The satisfaction conditions can be written the same way as for SQML, except that we 
have to put “〈Σ, δ, D, W, R〉” in place of “〈Σ, D, W, R〉”, and in place of (∀) we have: 
 
(∀F) P = ∀vQ and for all o ∈ δ(w), g[v/o] satisfies Q in 〈Σ, δ, D, W, R〉 at w, or … 
 
In MFL, neither the Barcan Formula nor the Converse Barcan Formula is valid.  To see 
that the Barcan Formula, (∀vQ → ∀vQ), is not valid, consider a structure in which 
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there is a world w such that for all o ∈ δ(w), 〈o〉 ∈ Σ(F, w) and for all wʹ′, if wRwʹ′, then 
〈o〉 ∈ Σ(F, wʹ′).  In other words, every object in w is F in w and is F in every world 
accessible from w. ∀xFx will be true at w.  But suppose also that in some worlds wʹ′, 
there are objects in δ(wʹ′) that are not in Σ(F, wʹ′) (and so not in δ(w)).  ∀xFx will be 
false at w.   
 
To see that the Converse Barcan Formula is not valid, consider a structure in which for 
every world w ∈ W, for all o ∈ δ(w), 〈o〉 ∈ Σ(F, w) but in which for some w ∈ W, and 
some wʹ′ ∈ W, and some oʹ′ ∈ δ(wʹ′), 〈oʹ′〉 ∉ Σ(F, w).  (Recall that 〈W, R〉 is an S5 frame.)  
∀xFx will be true at wʹ′, but ∀xFx will be false at wʹ′.  In other words, at each world 
everything that exists at that world is F, but some things that exist at wʹ′ are not F at w.   
 
But while MFL has these seemingly desirable results, it has has some strange results too.  
In particular, Existential Introduction is no longer valid:  Q | =/  MFL ∃vQv/n.  For example,  
Fa | =/  MFL ∃xFx.  Suppose Σ(a, w) ∈ D, and 〈Σ(a, w)〉 ∈ Σ(F, w), but for all o ∈ δ(w), 〈o〉 ∉ 
Σ(F, w).  Then Fa will be true at w, but ∃xFx will be false at w.  The most we can say is 
that {Q, ∃v v =n} | =    MFL ∃vQv/n.  (Similarly, we have ∀vQ | =/  MFL Qn/v, but  
{∀vQ, ∃v v =n} | =    MFL Qn/v.) 
 
In defense of this result, it may be said that “Santa Claus lives at the North Pole” is true, 
while “There exists an x such that x lives at the North Pole” is false.  I don’t see it.  
“Santa Claus lives at the North Pole” is false.  (That’s not to say that “It is not the case 
that Santa Claus lives at the North Pole” is true.  Both sentences may be neither true nor 
false.  To deal with a language containing names of fictions, we may need a three-valued 
semantics.) 
 
Off hand, you might think that it would help if we stipulated that each extension at a 
world must be formed from members of the inner domain for that world.  That is, Σ(F, w) 
must be a set of n-tuples formed from members of δ(w), not merely members of D.  Then 
if Fa is true, so that 〈Σ(a, w)〉 ∈ Σ(F, w), we can be sure that Σ(a, w) ∈ δ(w).  So  
Fa | =   MFL ∃xFx.  But that only helps when the premise is an atomic sentence (and in 
certain other cases).  We still have: ¬Ga | =/  MFL ∃x¬Gx.  If Σ(a, w) ∉ δ(w), then, by our 
stipulation about extensions, ¬Ga will be true at w; but ∃x¬Gx may still be false at w 
(and will be false if for all o ∈ δ(w), 〈o〉 ∈ Σ(G, w)).   
 
Alternatively, we might stipulate that for every name a, Σ(a, w) ∈ δ(w).  That will ensure 
that Existential Introduction is valid without restriction.  But that solution carries costs of 
its own.  To invalidate the Barcan formula we want to allow that for some w, wʹ′ δ(w) ≠ 
δ(wʹ′).  So if we stipulate that Σ(a, w) ∈ δ(w) and Σ(a, wʹ′) ∈ δ(wʹ′), then we cannot 
stipulate that for all w, wʹ′, Σ(a, w) = Σ(a, wʹ′), which means that we cannot stipulate that 
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names are rigid designators.  The undesirable consequence of that is that, without further 
ado, we will not be able to prove the validity of a = a.  We might restore the necessity 
of identity by stipulating that, for each structure, the extension of “=” is the identity 
relation on the entire outer domain.  But then we will have to decide whether we want 
a = a to imply ∃x x = a or not, and, if the true identities include the likes of “Santa Claus 
= Santa Claus”, then neither choice is entirely unobjectionable. 
 
 
Quantified Modal Logic with an Existence Predicate 
 
In defense of the Barcan formula and converse Barcan formula, it might be said that the 
problem is not that they are invalid, just that they are easily misinterpreted.  If we read 
the quantifiers as saying “For everything that exists” and “There exists an x such that”, 
then we will think that these formulas are invalid.  But we can grant that the Barcan 
formula and the converse Barcan formula are valid if we read the quantifiers as “For 
everything possible” and “There is a possible thing x such that”. 
 
As for our counterexamples to the Barcan formula, if everything that is even possible 
necessarily has mass, then there could not be a possible world in which something does 
not have mass.  There is a possible world in which I have a twin brother; and so there is 
some possible object of which we can say, “He might possibly have been my twin 
brother”.   
 
As for our counterexample to the converse Barcan formula, on the present reading of the 
quantifiers, the antecedent, ∀x∃y x = y, means that at each possible world, each 
possible thing is a possible thing, which is trivial.  But likewise the consequent, 
∀x∃y x = y, is trivial.  It just says that for each possible thing, from the point of view 
of every possible world it is a possible thing. 
 
But now we have a different problem.  We do not want our quantifiers always to be 
understood as ranging over everything possible.  For example, if I say, “No one ever lives 
to be more than 120 years old”, that might be true.  But it will not be true if it means “No 
possible person lives to be more than 120 years old”.  To address this difficulty, we can 
introduce an existence predicate E (a frontwards “e”, as distinguished from the backwards 
“e” of the existential quantifiers).  Then when we want to say that all actual things are F, 
without also saying that all possible things are F, we can write: ∀x(Ex → Fx).  And when 
we want to say that some actual thing is F, we write ∃x(Ex ∧ Fx). 
 
All of our definitions of a modal structure, and satisfaction, remain just the same as in 
Simple Quantified Modal Logic.  It’s just that we now think of the interpretation of E as 
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assigning to E at world w the subset of objects in D that actually exist in w.  For example, 
we have: 
 

| =   SQML ∃x x = a, 
 

and even 
 

| =   SQML ∃xx = a, 
 

but 
  

| =/   SQML ∃x(Ex ∧ x = a). 
 

and 
 

| =/   SQML ∃x(Ex ∧ x = a). 
 

This might be the best we can do within the framework of a bivalent semantics.  If you 
think that neither “Pegasus flies” nor “Pegasus does not fly” should count as true, 
because Pegasus does not exist, then you will need to adopt a three-valued semantics—to 
allow that both of these sentences are neither true nor false.   
 
 
 Rigid designation 
 
We have assumed that in each structure, the assignment of objects to individual constants 
is constant across worlds.  That is, for all individual constants n, for all w, wʹ′ ∈ W, 
Σ(n, w) = Σ(n, wʹ′).   
 
We can have a different kind of denoting expression, called a definite description, of the 
form:  (ιvG)  (That’s the Greek letter iota, followed by a variable, followed by a formula.  
The iota is supposed to be written upside down, but I don’t think MS Word will let me do 
that.)  We can think of this as a translation of  “the G-thing”.  Definite descriptions, so 
written, form abbreviations.  For any formula F, 
 

F(ιvG)/u =def  ∃v(Ev ∧ G ∧ ∀x((Ex ∧ Gx/v) → x = v) ∧ Fv/u). 
 

For example, “The little green man walked in” means: “There is a v such that v is an 
existing little green man and every existing little green man is v and v walked in”.  
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Definite descriptions are non-rigid designators because the things they “denote” will not 
be the same in each world.   
 
The modal-logical difference between rigid designators and nonrigid designators is 
evident from the following: 
 

a = b | =   SQML  a = b 
 
(ιxG) = (ιyH) | =/    SQML  (ιxG) = (ιyH) 
 

The reason for the latter is that even though, the unique thing in w that is G may be the 
unique thing in w that is H, it does not follow that in every possible world wʹ′ the unique 
thing in wʹ′ that is G is the unique thing in wʹ′ that is H. 
 
So, for example, while it may be true that Hesperus is Phosphorus and true that 
necessarily Hesperus is Phosphorus, and true that Hesperus is the first star seen in the 
evening and true that Phosphorus is the first star seen in the morning, and true that the 
first star seen in the evening is the first star seen in the morning, it is not true that 
necessarily the first star seen in the morning is the first star seen in the evening. 

 
 

Counterpart Theory 
 
There is at least one other idea from modal logic that frequently comes up in the 
philosophical literature, and that is the idea of counterparts.  Some people, e.g., David 
Lewis, haven’t liked the idea that a single individual can exist in different possible 
worlds, e.g., that I might belong to both the domain of objects in the actual world and 
belong to the domain of objects in some merely possible world.  One thing they don’t like 
about it is that it rules out the possibility that in some worlds there might be two people 
who have an equal claim on being me.  And in some worlds there might be one person 
who has equal claim on being you and me.  Suppose that you have an identical twin 
sister.  But in some other world, your mother did not give birth to twins; she gave birth to 
just one daughter instead.  In that other world, which person is the same person as you?  
Answer: that one daughter of your mother.  But equally, that one daughter of your mother 
is the same person as your twin sister.  (So being the same person as is not transitive.) 
 
To arrange things so that our formal semantics reflects this idea, we may suppose that for 
any two worlds w and wʹ′, the domain for w and the domain for wʹ′ are mutually exclusive.  
The extensions assigned to predicates at a world are formed exclusively from members of 
the domain for that world.  We define intensional objects as relations whose members are 
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pairs consisting of a world and an object in the domain of that world (but the relation 
need not be a function).  The objects assigned to individual constants and variables are 
such intensional objects. For example, if there are just three worlds, w1, w2, and w3, and 
o1 ∈ δ(w1), o2 ∈ δ(w2), and o3 ∈ δ(w3), then an intensional object could be {〈w1, o1〉, 〈w2, 
o2〉, 〈w3, o3〉}.   
 
If we write a sentence using  or ◊ and some individual constant n, then in order to 
decide whether it is true in world w, we have to consider the intensional object assigned 
to n.  For example, suppose Int is the intensional object assigned to the individual 
constant n in some structure.  Then Fn will be true at w if and only if for all o ∈ D and 
all wʹ′ ∈ W, if wRwʹ′ and 〈wʹ′, o〉 ∈ Int, then 〈o〉 ∈ Σ(F, wʹ′).  
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