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Contemporary discussions of truth often make reference to Kripke’s theory of truth 
(presented by Kripke only his 1975 Journal of Philosophy paper).  What Kripke did 
was show how to interpret a language in such a way that it contains its own truth 
predicate.  The fact that the language he describes contains its own truth predicate is 
proved by means of something called a fixed-point theorem. 
 
I have written this document and posted it on the web because it is hard to find a 
presentation of Kripke’s theory that will be understandable even to readers who have 
had only a first course in logic.  It is my intention that this presentation will be 
understandable to all readers who have been exposed to at least the following:  The 
languages of ordinary predicate logic.  Recursive definitions of truth in a structure for 
such languages. (Structures are also called models or interpretations.)  The basic 
concepts and notation of set theory, such as curly brackets, membership (“∈”), 
inclusion (“⊆”), ordered n-tuples, relations and functions. 
 
Kripke’s theory of truth builds on a three-valued interpretation of a language.  (So 
sentences may be neither true nor false (N) as well as (T) or false (F).)  Various three-
valued valuation schemes may be used.  Here we will consider only the strong Kleene 
scheme, which is the only one most people care about. 
 
I can take no credit for this presentation.  It is nothing more than a distillation from the 
more general presentation in Anil Gupta and Nuel Belnap’s book, The Revision 
Theory of Truth (MIT Press, 1993) (who in turn acknowledge debts to Fitting and 
Visser).  Gupta and Belnap’s presentation deals with a broad range of valuation 
schemes simultaneously (including four-valued ones).  This presentation merely boils 
theirs down to the point where it deals with only the strong Kleene valuation scheme.  
By thus narrowing our scope, we avoid many complications. 
 
In every other presentation that I know of, something frustrating happens at the last 
minute.  Just when the crucial fixed-point theorem is about to be achieved, the author 
appeals to some recondite fact of set theory, such as the fact that there is no 1-1 
mapping of the ordinals into any set.  The present presentation also employs such an 
assumption at the crucial point, but it is one that can be easily grasped on the basis of 
the definitions given here, namely, Zorn’s Lemma. 
 
Another clear presentation, in a very different style closer to Kripke’s own, is that in 
Keith Simmons’s, Universality and the Liar (Cambridge University Press, 1993), 
although Simmons’s is one of those that contains a frustrating step at last minute (viz., 
the appeal to the Axiom of Replacement on p. 51).  Simmons’s method uses 
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transfinite induction over the ordinal numbers in place of the algebraic concepts of the 
present proof.  (If you don’t know what that means, it doesn’t matter here.) 
 
At the end, I will also state what I take to be the main reason for dissatisfaction with 
Kripke’s theory of truth. 

 

The strong Kleene valuation scheme: 

Let L be a language with the usual connectives (¬, ∨, ∧, ∃, ∀) and in which sentences 

are defined in the usual way. 

 

Let a structure M be a pair 〈D, Σ〉, 

where D, called a domain, is a set of objects in the world, 

and Σ, called an assignment, = 〈Σ0, Σ+, Σ–〉, where 

for all names (individual constants) n of L, Σ0(n) ∈ D, 

for all n-ary predicates R of L,  

Σ+(R) ⊆ Dn (i.e., the set of n-tuples formed from members of D), 

Σ–(R) ⊆ Dn, and 

Σ+(R) ∩ Σ–(R) = ∅. 

(Σ+(R) is the extension of R, Σ–(R) is the antiextension of R, and the intersection of the 

extension and the antiextension of a predicate is always empty.) 

 

σ, called a variable assignment (for a given structure), is a function from the variables 

of L into the domain D, i.e., such that σ(v) ∈ D. 

The empty variable assignment is a variable assignment having the empty set as its 

domain (so that it assigns nothing to anything). 

σ[v|o] is a variable assignment just like σ except that σ(v) = o. 

 

Define: π(t) =    Σ0(t) if t is a name. 

       σ(t) if t is a variable. 



Kripke’s Theory of Truth Page 3 

A strong Kleene valuation ValM,σ is a function from the set of formulas of L into 

{T, F, N}, and is defined relative to a structure M and variable assignment σ as follows: 

 (1) Where R is an n-place predicate and t1, t2, …, tn are terms (variables or names), 

 ValM,σ(Rt1t2…tn) = T iff 〈π(t1), …, π(tn)〉 ∈ Σ+(R),  

 ValM,σ(Rt1t2…tn) = F iff 〈π(t1), …, π(tn)〉 ∈ Σ–(R),  

 ValM,σ(Rt1t2…tn) = N otherwise. 

(2) Where P is a formula, 

 ValM,σ(¬P) = T iff ValM,σ(P) = F, 

 Val M,σ(¬P) = F iff ValM,σ(P) = T, 

 ValM,σ(¬P) = N otherwise. 

(3) Where P and Q are formulas, 

  ValM,σ((P ∨ Q)) = T iff either ValM,σ(P) = T or ValM,σ(Q) = T, 

 ValM,σ((P ∨ Q)) = F iff both ValM,σ(P) = F and ValM,σ(Q) = F, 

 ValM,σ((P ∨ Q)) = N otherwise. 

Similarly for the other 2-place connectives. 

(4) Where P is a formula, 

 ValM,σ(∃vP) = T iff for some o ∈ D, ValM,σ[v/o](P) = T, 

 ValM,σ(∃vP) = F iff for every o ∈ D, ValM,σ[v/o](P) = F, 

 ValM,σ(∃vP) = N otherwise. 

Similarly for ∀. 

 

A strong Kleene valuation of sentences (as opposed to arbitrary formulas) is a function 

ValM from sentences into {T, F, N} as follows:   

Where σ is the empty variable assignment, ValM(P) = T iff ValM,σ(P) = T, ValM(P) = F iff 

ValM,σ(P) = F, and ValM(P) = N otherwise. 
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Definition of partial order:   ≤ is a partial order on a domain U iff ≤ is a relation on U 

such that: 

(i) for all m ∈ U, m ≤ m,  

(ii) for all m, n ∈ U, if m ≤ n and n ≤ m, then m = n, and  

(iii) for all m, n, o ∈ U, if m ≤ n and n ≤ o, then m ≤ o.    

(We can represent a partial order as a set of ordered pairs. The interpretation of “≤” 

need have nothing to do with numbers.) 

 

Concepts pertaining to partial orders: 

Suppose ≤ is a partial order on a domain U, and suppose W ⊆ U, and x ∈ U.  Then: 

(i)  x is an upper bound of W in U relative to ≤ iff, for all y ∈ W, y  ≤ x.  (x may not 

be in W). 

(ii)  x is a least upper bound of W in U relative to ≤ iff x is an upper bound of W and 

for all upper bounds y of W in U, x ≤ y. 

(iii)  An element m ∈ U is a maximal element in U relative to ≤ if and only if there are 

no members n ∈ U such that n ≠ m and m ≤ n.  (There may be no maximal 

element.) 

(iv) W is a chain in U relative to ≤ if and only if for every x, y ∈ W, either x ≤ y or y ≤ x. 

 

If ≤ is a partial order on U and W ⊆ U, then W is consistent in U relative to ≤ iff  

for each two-membered set {m, n} ⊆ W, {m, n} has an upper bound in U. 

 

≤ is a coherent, complete partial order (ccpo) on U iff U is partially ordered by ≤ and 

every consistent subset of U has a least upper bound in U relative to ≤. 
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Examples: 

 

 

 

 

 

 

X = {a, b, c}, Y = {a, b}, Z = {a, c} 

There is no upper bound of X in X.   

b is a least upper bound of Y in Y and in X.   

c is a least upper bound of Z in Z and in X.   

b is a maximal element of Y, and c is a maximal element of Z.   

b and c are both maximal elements in X. 
 
 

 

X = {a, b, c}, Y = {a, b, c, d}. 

Both c and d are upper bounds of X in Y.   

c is a least upper bound of X both in X and in Y.   

d is a maximal element of Y.   

c is a maximal element of X. 

{a, c, d}, for example, is a chain in Y, but {a, b, c} is not a chain in either X or Y. 

d

b

c
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b c 
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Suppose X = {a1, a2, a3, a4,…} is an infinite set, and both b and c are greater than 
every member of that set. Y = {a1, a2, a3, a4, …, b, c}. 

b and c are both upper bounds of X in Y, and b is the least upper bound of X in Y.  

There is no upper bound of X in X, and there is no maximal element of X.   

c is a maximal element of Y.  

X is itself a chain (in X and in Y), and Y is a chain in Y. 

X is consistent but not a ccpo (since X itself is a consistent subset of X but does not 

have a least upper bound in X).   

Y is consistent and also a ccpo. 

 

Zorn’s Lemma: Where ≤ is a partial order on U, if every chain in U has a least upper 

bound in U, then there are maximal elements in U.  

Note:  Given the rest of the axioms of set theory, one can prove that Zorn’s Lemma is 

equivalent to the Axiom of Choice (see Paul R. Halmos, Naïve Set Theory, Springer-

Verlag, 1960, 1974, chapter 16), but one can also regard it as a basic, unprovable 

assumption. 

a1

a2

a3

a4

b

c
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The order of truth values 

Let ≤
K
 be a partial order on the set of truth values K = {T, F, N} such that N is K-less-

than-or-equal-to both T and F and each value is K-less-than-or-equal-to itself.   

That is, ≤
K
 = {〈N, T〉, 〈N, F〉, 〈N, N〉, 〈T, T〉, 〈F, F〉}.  (So N ≤

K
 T and N ≤

K F, but also  

N ≤
K
 N, etc.  F and T are not ordered with respect to one another.) 

Interpreting the truth predicate 

 

Suppose the language L contains the predicate “True”.   

Suppose we are given a structure M = 〈D, Σ〉 for a language L minus the predicate 

“True”.  (That is, take the sentences of L, remove all the sentences containing “True”, 

and the result will be the language L minus “True”.)   

We stipulate that D contains all of the sentences of L as well as other things.  (So 

sentences are themselves “objects in the world”.) 

 

Let G be the set of functions from D into {T, F, N}. 

 

Let ≤
G
 be a relation on G, where for all f, g ∈ G, f ≤

G
 g iff for all o ∈ D, f(o) ≤

K
 g(o). 

(In other words, f is G-less-than-or-equal-to g iff the truth value of o according to f is 

always K-less-than-or-equal-to the truth value of o according to g.  Of course, some 

pairs of members of G will not be ordered by this relation.)  Obviously, ≤
G
  is a partial 

order on G. 

 

T F

N
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Where g is a member of G, say that M+g is a structure 〈D, Σ+g〉,  

where Σ+g = 〈Σ0, Σ++g, Σ–+g〉, where 

Σ++g is just like Σ+ except that Σ++g(“True”) = {〈o〉 | g(o) = T}, and 

Σ–+g is just like Σ– except that Σ–+g(“True”) = {〈o〉 | g(o) = F}. 

In other words, M+g is a structure like M except that it also assigns an extension and 

antiextension to “True”, which are determined by the function g.  Note that it is not the 

function g that assigns an extension to “True” but the function Σ++g. 

 

We will take a special interest in one of these functions in G, call it g0, which is such 

that for all o ∈ D, g0(o) = N. 

 

We now define a function ρ that takes us from one such function to another.  Where g 

is a member of G: 

 

                       ValM+g(P), if o = P, a sentence of L. 
ρ(g)(o) =  
            F, if o is not a sentence of L. 
 

In other words, for every nonsentence o ∈ D, M+ρ(g) puts that object o into the 

antiextension of “True”, since it is definitely not true.  “That table is true” is thus false.  

For each sentence o ∈ D, M+ρ(g) puts o into the extension of “True”, the antiextension 

of “True”, or neither, depending on whether o was true, false or neither in M+g.  “ρ” is 

the Greek letter “rho”.  The function ρ is called “jump”, or “the jump function”. 

 

Note:  It is not the case that every member of G other than g0 is bound to be the result 

of applying ρ to some other member of G.  In other words, the members of G do not 

form a chain ordered by ρ.  One reason is that chains in G ordered by ρ may have 

various starting points.  For instance, in addition to the starting point g0, we might have 
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a starting point that is just like g0 except that T is assigned to the truth-teller, “This 

sentence is true”.  Another reason is that it can happen that there is a member of G, g* 

such that for each of infinitely many members gi of G, gi ≤G
 g*, even though g* is not 

the result of applying ρ to any of the gi.  For instance, there could be a sentence that 

says, in effect, “The liar sentence is not true for any of the functions g0, ρ(g0),  

ρ(ρ(g0)), …”, and that sentence might receive a truth value from g* even if it does not 

receive one from any of the functions g0, ρ(g0), ρ(ρ(g0)), … . 

 

Definition:   

A fixed point of a function f is an element e in the domain of f such that f(e) = e. 

 

Our objective:   

We want to show that ρ has a fixed point.  That is, there is a member of G, call it g♥ 

such that g♥ = ρ(g♥).   

 

What the significance of this result will be:   

Call the structure M+g♥ the fixed-point interpretation of L.  Call a language interpreted 

by such a structure a fixed-point language.  A fixed-point language contains its own 

truth predicate.  That is to say, if P is a sentence in D and σ(“x”) = P, then ValM+g♥,σ(P) 

= ValM+g♥,σ(“True(x)”).  Consequently, if P is a sentence, then “True([”    
) 
  P    

) 
  “])” is true in 

L in M+g♥ iff P is true in L in M+g♥.  So, contrary to what Tarski supposed (because he 

took bivalence for granted), a language can contain its own truth predicate.  

Proof:  Suppose g♥ is a fixed point for ρ; suppose P is a sentence in D; and suppose 

σ(“x”) = P.  Then, by the definition of ρ, ValM+g♥,σ(P) = T iff ρ(g♥)(P) = T.  Since g♥ is a 

fixed point for ρ, this is so iff g♥(P) = T, which is so iff 〈P〉 ∈ Σ++g♥(“True”), which is so 

iff ValM+g♥,σ(“True(x)”) = T.  (Similarly, ValM+g♥,σ(P) = F iff ValM+g♥,σ(“True(x)”) = F.) 
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Observation 1:  ≤
K
 is a ccpo on K = {T, F, N}.  Proof:  Just check each consistent 

subset of K and see that it has a least upper bound. 

 

Observation 2:  For all g ∈ G, g0 ≤G
 g. This is so just because for all o ∈ D, g0(o) = N 

and for all V in K, N ≤
K
 V.  In particular, g0 ≤G

 ρ(g0). 

 

Lemma 1:  For all f, g ∈ G, if f ≤
G g, then for all sentences P of L, ValM+f(P) ≤

K
 ValM+g(P).  

(In other words, if g leaves no more gaps in the extension of “True” than f leaves, then 

no more sentences of L will be neither true nor false in M+g than were neither true nor 

false in M+f.)  This can be proved by induction on the complexity of sentences. 

 

Lemma 2:  ρ is monotone relative to ≤
G
.   

That means:  For all f, g in G, if f ≤
G
 g, then ρ(f) ≤

G
 ρ(g).   

Proof:  By Lemma 1, if f ≤
G g, then for all sentences P of L, ValM+f(P) ≤

K
 ValM+g(P).  But 

for all sentences P of L, ρ(f)(P) = ValM+f(P) and ρ(g)(P) = ValM+g(P).  So for all 

sentences P of L, ρ(f)(P) ≤
K
 ρ(g)(P).  For all nonsentences o ∈ D, ρ(f)(o) = ρ(g)(o) = F.  

So for all objects o ∈ D, ρ(f)(o) ≤
K
 ρ(g)(o).  So, ρ(f) ≤

G
 ρ(g). 

 

Lemma 3:  ≤
G
 is a ccpo on G.  

Proof:  Suppose that H is a consistent subset of G (in the sense of “consistent” 

defined on p. 4 above).  So if f, g ∈ H, then {f, g} has an upper bound in G.  Since H 

is a set of functions from D into {T, F, N} and neither T nor F is K-less-than-or-equal-

to the other, this means that there is no object o ∈ D such that either f(o) = T and g(o) 

= F or f(o) = F and g(o) = T.   

We need to show that H has a least upper bound in G relative to ≤
G
.  For each 

o ∈ D, set Ho = {x| x = f(o) for some f ∈ H}.  By what I just explained about H, Ho will 
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be either {T}, {F}, {N}, {T, N}, or {F, N}.  By Observation 1, these all have a least upper 

bound in K relative to ≤
K
.   

Define the function k as follows:  For all o ∈ D, k(o) = the least upper bound of 

Ho (the existence of which we have just established).  k will be a least upper bound 

for H in G relative to ≤
G
:  By the definition of G, k ∈ G.  k is an upper bound for H:  

Since for every o ∈ D, k(o) is the least upper bound of Ho, and for every other 

member f of H, f(o) ∈ Ho, for every o ∈ D, for every member f of H, f(o) ≤
K
 k(o).  

Every other upper bound for H is “higher” than k relative to ≤
G
:  Suppose that h is an 

upper bound for H in G and not(k ≤
G
 h).  Then for some o ∈ D, not(k(o) ≤

G
 h(o)).  Then 

since k(o) is the least upper bound for Ho relative to ≤
K
, h will not be an upper bound 

for H.   

 

Let H = {y | y  is a function in G in the domain of ρ, and y ≤
G
 ρ(y)}.   

In other words, something belongs to H just in case it is a function from D into {T, F, 

N} and it is G-less-than-or-equal-to the function that results from applying jump to it. 

 

Lemma 4:  ≤
G
 is a ccpo on H. 

Proof:  Let J be a consistent subset of H.  We need to show that J has a least upper 

bound in H.  J is a consistent subset of G as well.  Since G is a ccpo, J has a least 

upper bound in G.  Call it b.  To show that b is a least upper bound of J in H, it 

suffices to show that b is a member of H, i.e., that b ≤
G
 ρ(b).  Let a be an arbitrary 

member of J.  Since b is an upper bound of J in G, a ≤
G
 b.  Since ρ is monotone 

(Lemma 2), ρ(a) ≤
G
 ρ(b).  Since J ⊆ H, a ≤

G
 ρ(a).  So a ≤

G
 ρ(b).  So ρ(b) is an upper 

bound of J in G.  Since b is the least upper bound of J in G, b ≤
G
 ρ(b). 
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Lemma 5:  H has maximal elements. 

Proof:  Let C be a chain in H.  By the definition of chains, C is consistent in H.  Since 

H is a ccpo, C has a least upper bound in H.  By Zorn’s Lemma, H has maximal 

elements. 

 

Kripke Fixed-Point Theorem:  There are fixed points for ρ in H.  In particular, there is 

a fixed point g♥ for ρ in H such that g0 ≤G
 g♥. 

Proof:  Let m be a maximal element in H.  By Observation 2 (since H ⊆ G), g0 ≤H
 m.  

By Observation 2 again, g0 ≤G
 ρ(g0).  So g0 ∈ H.  Since m ∈ H, m ≤

G
 ρ(m).  Since ρ is 

monotone, ρ(m) ≤
H
 ρ(ρ(m)).  So ρ(m) ∈ H.  But m is maximal in H.  So m = ρ(m).  So 

m is a fixed point for ρ such that g0 ≤G
 m.  Let g♥ = m. 

 

 

The main criticism of Kripke’s theory of truth 

 
One of the main things one hopes for in a theory of truth is a diagnosis of the semantic 
paradoxes.  Kripke’s theory of truth takes us some distance toward that, but not very 
far.  What Tarski showed (with his “undefinability theorem”) is that a bivalent language 
cannot contain its own truth predicate.  Consequently the liar sentence cannot be 
interpreted as saying what it seems to say, namely, that it itself does not belong to the 
extension of a predicate that subsumes all and only the true sentences of the same 
language to which the liar itself belongs.  
 
What Kripke has shown is that if a language is not bivalent, then it can have a fixed-
point interpretation on which it contains its own truth predicate.  So the liar sentence 
can be interpreted as referring to itself and saying of itself that it belongs to the 
antiextension of a truth-predicate for very language to which it itself belongs.  Further, 
we find, the liar sentence belongs to neither the extension nor the antiextension of the 
truth-predicate on such a fixed-point interpretation. Similarly, we can show that if a 
language is not bivalent, then it can contain both its own truth predicate and its own 
falsehood predicate.  That is, there can be a structure and a predicate “is true” and a 
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predicate “is false” such that a sentence belongs to the extension of “is true” in that 
structure if and only if it is true in that structure and belongs to the extension of “is 
false” in that structure if and only if it is false in that structure. 
 
The trouble is that such fixed-point languages still cannot contain theiry own non-truth 
predicates (as Kripke himself noted in his 1975 paper).  That is, for every structure for 
such a language, there is no predicate in the language (for example, “is not true”) such 
that a sentence belongs to the extension of that predicate in that structure if and only if 
the sentence is not true in that structure.  I will prove that presently.  But first, how can 
that be so if “is true” is a truth-predicate for a fixed-point language?  Well, if “is true” is 
the truth predicate in a fixed-point language, then the extension of “is not true” 
comprises the objects in the antiextension of “is true”, which unfortunately may not 
include all of the objects that fall outside of the extension of “is true”. 
 
The consequence is that Kripke’s theory of truth really does not give us a diagnosis of 
the semantic paradoxes.  If we think of the liar sentence as a sentence in a Kripke-
fixed point language, then the predicate “not true” that occurs in it cannot be 
interpreted as meaning what we interpret it as meaning when we think of the liar 
sentence as belonging to our own language, namely, that the object of which it is 
predicated falls outside the extension of “true”.  There have been attempts to excuse 
this result (for example, in Scott Soames’s book Understanding Truth (Oxford, 1998, 
pp. 188-190)), but in my opinion we do not need to make excuses because there is a 
better theory of truth to be had.  (See my “Semantics for Deflationists”, in JC Beall and 
Bradley Armour-Garb, Deflationism and Paradox, (Oxford University Press, 2005), pp. 
148-176.) 
 
I will now prove that Kripke’s fixed point languages cannot contain their own non-truth 
predicate.  More precisely, they cannot do that if they meet certain other minimal 
conditions that we should expect any language to meet if our semantics for that 
language is to provide a model (in the sense of paradigm case) for our diagnosis of 
the paradoxes that arise in our own language. 
 
I will assume that the language in question contains a quotation name for every 
formula in that language.  For clarity, however, I will use square brackets to form 
quotation-names rather than quotation marks.  Thus, the name of “x is a tree” is “[x is 
a tree]”, and, in general, if S is any formula of the language, then [S] is its quotation-
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name.  I also assume that the language contains its own diagonal predicate.  If F(v) is 
a formula of the language containing v as its sole free variable and [F(v)] is its 
quotation-name, then F([F(v)]) is the diagonal of F(v).  Let the diagonal predicate of 
the language be D, so that a sentence of the form Dab means that the sentence that a 
denotes is the diagonal of the sentence that b denotes.   
 
A well-known observation of Gödel’s, sometimes called the diagonal lemma, tells us 
that, under these conditions, for any formula F(v) of our language containing v as its 
sole free variable, we can construct a Gödel-sentence A for F(v) such that A is true if 
and only if F([A]) is true.  In particular, the following sentence is such a Gödel-
sentence for F(v): 

∃y(Dy[∃y(Dyx ∧ F(y))] ∧ F(y)). 

It is evident that this sentence will be true if and only if the following sentence is true: 

F([∃y(Dy[∃y(Dyx ∧ F(y))] ∧ F(y))]). 

By virtue of the meaning of D, the first of these two sentences is true if and only if  
∃y(y = [∃y(Dy[∃y(Dyx ∧ F(y))] ∧ F(y))] ∧ F(y)) is true, which is so if and only if the 
second sentence is true. 
 
Suppose, for a reductio, that a Kripke fixed-point language contains its own non-truth 
predicate NT.  Since NT is a non-truth predicate, we have it that: 
 
(i)  NT[s] is true in L if and only if s is either false in L or neither true nor false in L.   
 
By the Gödel diagonal lemma, there is a sentence A of L such that  
 
(ii) A is true in L if and only if NT[A] is true in L. 
 
From (i) and (ii), we derive: 
 
(iii) A is true in L if and only if A is either false in L or neither true nor false in L. 
 
But (iii) is a contradiction.  So we were mistaken to suppose that a Kripke fixed-point 
language might contain its own non-truth predicate. 


